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Abstract

In this paper, we present a new limiter for discontinuous Galerkin (DG) schemes, based on subcell
resolution through reconstructed flux correction, for hyperbolic conservation laws. This limitation
technique is constructed by means of a subcell Finite Volume (FV) formulation. The algorithm is
thus simple, and is able to retain the very high accurate subcell resolution of DG schemes.

The main idea of this correction procedure is to preserve as much as possible the high accuracy and
the very precise subcell resolution of DG schemes. Consequently, an a posteriori correction will only
be applied locally at the subcell scale where it is needed, but still ensuring the scheme conservation.
To do so, we first reformulate DG schemes as a subcell FV scheme provided the use of the correct
numerical flux. This very simple development provides us with the so-called DG reconstructed flux.
This theoretical part will serve as a basis for our limiter framework.

Practically, at each time step, we compute a DG candidate solution and check if this solution
is admissible (for instance positive, non-oscillating, . . . ). If it is the case, we go further in time.
Otherwise, we return to the previous time step and correct locally, at the subcell scale, the numerical
solution. This is why it is refereed to as a posteriori limitation. To this end, each cell is subdivided
into subcells. Then, if the solution is locally detected as bad, we substitute the DG reconstructed
flux on the subcell boundaries by a robust first-order or second-order TVD numerical flux. And
for subcell detected as admissible, we keep the high-order reconstructed flux which allows us to
retain the very high accurate resolution and conservation of the DG scheme. Furthermore, only
the solution inside troubled subcells and its first neighbors will have to be recomputed, elsewhere
the solution remains unchanged. Numerical results on various type problems and test cases will be
presented, both in 1D and 2D on Cartesian grids, to assess the very good performance of the design
limiting algorithm.
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1. Introduction

The Discontinuous Galerkin (DG) method, initially introduced by Reed and Hill in the context of
neutron transport [52], has become these last decades one of the most widely used numerical scheme,
especially in the context of computational fluid dynamics. A major development of DG schemes was
carried out by Cockburn, Shu et al in a series of seminal papers [12, 11, 9, 10]. Theoretically, DG
methods allow to reach any arbitrary order of accuracy, while keeping the stencil compact, along
with other good properties as L2 stability and hp-adaptivity. Discontinuous Galerkin scheme is
extremely accurate with a very precise subcell resolution. It is even superconvergent in some cases,
see for instance [45, 63]. Nonetheless, accuracy is not the only issue to be addressed. Robustness
is of fundamental importance. It is well known that high-order DG schemes can produce spurious
oscillations in the presence of discontinuities. These non-physical oscillations may generate non-
admissible solution (negative density or pressure in the case of gas dynamics for instance), which
may lead to nonlinear instability or crash of the code. Those schemes thus require some stabilization
techniques. This fundamental issue has been extensively tackled in the past, and there is thus a
vast literature on that topic. In the following, a brief review of the different existing limitation
techniques is given. For a lot more detailed description of the state of the art limiter, we refer to
[18] and the references within.

To overcome this issue of spurious oscillations, a wide range of techniques already exists. These
techniques mainly rely on two different paradigms that we referred to as a priori and a posteriori.
In the so-called a priori limitation, the correction procedure is applied before advancing the nu-
merical piecewise polynomial solution further in time. So first, a troubled zone indicator is used to
find where a limitation is required. Then, sufficient efforts are made on the numerical solution or
on the numerical scheme to be sure that one will be able to carry the computation out to the next
time step. Among others a priori limitation techniques, we could mention the artificial viscosity
technique [46, 57, 19] where some dissipative mechanism is added in shock regions. Some other
very popular limiting techniques can be gathered and referred to as slope and moment limiters
[10, 3, 4, 38, 62, 34, 41, 44]. In the former ones, as in [12, 10], the polynomial approximated solu-
tion is flattened around its mean value to control the solution jumps at cell interfaces. A smooth
extrema detector is then generally used to prevent the limitation technique to spoil the accuracy
in regions where no limiting is required. Moments limiters, mainly based on [3] and further de-
veloped in [4], can be seen as the extension of the aforementioned slope limiters to the case of
very high orders of accuracy. In those limiting strategies, the different moments of the polynomial
solution are successively scaled in a decreasing sequence, from the higher degree to the lower one,
allowing the preservation of the solution accuracy, as well as ensuring the solution boundedness near
discontinuities. The high-order DG limiter [38], generalized moment limiter [62], hierarchical Multi-
dimensional Limiting Process (MLP) [34, 33] and vertex-based hierarchical slope limiters [41, 44] all
derive from [12, 3, 4], and thus fall into this category. Now, another limiting strategy that deserves
to be mentioned is the (H)WENO limiting procedure [47, 2, 64, 65], where the DG polynomial
is substituted in troubled regions by a reconstructed (H)WENO polynomial. Last but not least,
some original subcell Finite Volume (FV) shock capturing techniques in the frame of DG schemes
[28, 6, 56, 13] have recently gained in popularity. In [28], the authors use a convex combination
between high-order DG schemes and first-order finite volumes on a subgrid, allowing them to retain
the very high accurate resolution of DG in smooth areas and ensuring the scheme robustness in the
presence of shocks. Similarly, in [56, 13], after having detected the troubled zones, cells are then
subdivided into subcells, and a robust first-order finite volume scheme is performed on the subgrid
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in troubled cells. Alternatively, some robust high-order scheme as MUSCL or WENO could either
be used to avoid too much accuracy discrepancy.

The a priori paradigm has already and extensively proved in the past its high capability and fea-
sibility, as in the aforementioned articles. Those techniques are a priori in the sense that only the
data at time tn are needed to perform the limitation procedure. Then, the limited solution is used
to advance the numerical scheme in time to tn+1. The “worst case scenario” has to be generally
considered as a precautionary principle. The paradigm of a posteriori limitation is different in the
way that first an unlimited candidate solution is computed at the new time step. The unlimited
solution is then checked according to some criteria (for instance positivity, discrete maximum prin-
ciple, . . . ). If the solution is considered admissible, we go further in time. Otherwise, we return
to the previous time step and correct locally the numerical solution by making use of a more ro-
bust scheme. Because the troubled zone detection is performed a posteriori, the correction can
be done only where it is absolutely necessary. Furthermore, let us emphasize that in a posteriori
correction procedures, the maximum principle preservation or positivity preservation is included
without any additional effort, while it is generally not the case of a priori limitations. Any other
property can be added as long as the admissibility set is convex, as entropy stability for instance.
Their scalability to any order of accuracy is also perfectly natural, as it does not imply to modify
different moments of a polynomial which may be of different orders of magnitude. Also, because a
posteriori corrections rely on a robust scheme, generally first-order finite volume scheme, the cor-
rected DG scheme is less sensitive to stability issue, as if the high-order method starts developing
instabilities it will trigger the a posteriori correction and the robust scheme is then alternately used.

Recently, some new a posteriori limitations have arisen. Let us mention the so-called MOOD tech-
nique, [8, 14, 15]. Through this procedure, the order of approximation of the numerical scheme is
locally reduced in an a posteriori sequence until the solution becomes admissible. In [18, 17], a sub-
cell FV technique similar to the one presented in [56] has been applied to the a posteriori paradigm.
Practically, if the numerical solution in a cell is detected as bad, the cell is then subdivided into
subcells and a first-order finite volume, or alternatively other robust scheme (second-order TVD FV
scheme, WENO scheme, . . . ), is applied on each subcell. Then, through these new subcell mean
values, a high-order polynomial is reconstructed on the primal cell. In contrary to [56], in [18, 17] the
authors make use of a lot more subcells than degrees of freedom of the DG solution, namely 2k+ 1
subcells for k + 1 degrees of freedom for a (k + 1)th-order DG scheme in the one-dimensional case.
Different arguments have motivated such choice. First, the subcell finite volume scheme optimal
CFL condition will match the one of the Runge-Kutta discontinuous Galerkin method on the primal
cell. The second reason is that the more subcells are used the more accurate the subcell correction
will theoretically be. However, doing so, to be able to reconstruct a polynomial of degree k with
2k + 1 subcell mean values, the authors are constrained to make use of a least square procedure,
loosing at the same time the subcell mean values computed through the robust corrected scheme.
It is then impossible to prove that the numerical solution is for instance positive at the subcell
level. Nevertheless, this correction procedure has the benefit to be very simple and robust, and is
able to preserve the high accuracy of DG schemes in smooth areas. We want to emphasize that
the correction procedure presented in this paper belongs to same family as this aforementioned a
posteriori technique, as it relies on a subgrid decomposition and finite volume correction.

In all the aforementioned limitation techniques, a priori and a posteriori, in the troubled cells the

3



high-order DG polynomial is either globally modified in the cell, or even discard as it is in the
(H)WENO limiter or any a posteriori correction technique. One of the main advantage of high-
order scheme is to be able to use coarse grids while still being very precise. But even in the case
where the troubled zone, as the vicinity a shock for instance, is very small regarding the character-
istic length of a cell, the DG polynomial will be globally modified. In the present paper, we then
introduce a conservative technique to overcome this issue, by modifying the DG numerical solution
only locally at the subcell scale. Let us now list the different objectives of the designed correction
procedure. First, to avoid the occurrence of non-admissible solution, we want the corrected scheme
to be maximum principle preserving, or in the context of systems positivity-preserving. And we
want to prevent the code from crashing (for instance avoiding NaN in the code). It is also essen-
tial for the corrected scheme to be conservative. Secondly, we would like to essentially avoid the
appearance of spurious oscillations. To do so, as it is generally done, we will enforce a discrete
maximum principle. Thirdly, we want to retain as much as possible the high accuracy and subcell
resolution of DG schemes, by minimizing the number of subcells in which the solution has to be re-
computed. Practically, we want the correction procedure to only modify the DG solution in troubled
subcell regions without impacting the solution elsewhere in the cell. Finally, we want the whole pro-
cedure to be totally parameter free, and to behave properly from 2nd order to any order of accuracy.

To design such correction procedure, we first need to reformulate DG schemes as a subcell FV
method provided the use of the correct numerical fluxes. This very simple development provides us
with the so-called DG reconstructed flux. We will demonstrate that this theoretical part is consis-
tent with the work presented in [29]. Let us also emphasize that the question of reformulating DG
schemes into finite volume schemes have also been recently addressed by means of Residual Distri-
bution (RD) schemes. Indeed, in a series of papers [50, 48, 51, 49], R. Abgrall and his co-authors
managed to prove that almost any numerical scheme, as DG and flux reconstruction schemes for
instance, can be recast as a residual distribution scheme. Reversely, in the very recent paper [49],
it has been proved that RD schemes can be rewritten as a finite volume method, which permits
consequently to formulate DG schemes as a finite volume method.

The DG reconstructed flux obtained in the first section will help us in correcting discontinuous
Galerkin schemes. Practically, at each time step, we compute a DG candidate solution and check
if this solution is admissible. If it is the case, we go further in time. Otherwise, we return to the
previous time step and correct locally, at the subcell scale, the numerical solution. In the subcells
where the solution was detected as bad, we substitute the DG reconstructed flux on the subcell
boundaries by a robust first-order or second-order TVD numerical flux. And for subcells detected
as admissible, we keep the high-order reconstructed flux which allows us to retain the very high
accurate resolution and conservation of DG schemes. Consequently, only the solution inside trou-
bled subcells and their first neighbors will have to be recomputed. Elsewhere, the solution remains
unchanged. This correction procedure is then extremely local.

To present this a posteriori correction, the remainder of this paper is organized as follows: In
Section 2, in the very simple case of one-dimensional scalar conservation laws, we briefly recall
the derivation of discontinuous Galerkin scheme, to finally express it as a specific FV scheme on a
subgrid. This theoretical section will allow us to introduce our correction technique in Section 3.
Last, numerical results both in 1D and 2D on Cartesian grids, provided in Section 4, will demonstrate
the effectiveness of the presented technique.
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2. DG as a subcell Finite Volume scheme

This section is devoted to the recall of discontinuous Galerkin schemes and their equivalency with
a finite volume method on a subgrid. To remain as simple as possible, one-dimensional Scalar
Conservation Laws (SCL) will be considered. Let u = u(x, t), for x ∈ ω ⊂ R, and t ∈ [0, T ], be the
solution of the following system





∂ u

∂t
+
∂ F (u)

∂x
= 0, (x, t) ∈ ω × [0, T ],

u(x, 0) = u0(x), x ∈ ω,

(1a)

(1b)

where u0 is the initial data and F (u) is the flux function. For the subsequent discretization, let us
introduce the following notation. Let {ωi}i be a partition of the computational domain ω. Here,
ωi = [xi− 1

2
, xi+ 1

2
] denotes a generic computational cell of size ∆xi. We also introduce a partition

of the time domain 0 = t0 < t1 < ... < tn < ... < tN = T and the time step ∆tn = tn+1 − tn. In
order to obtain a (k+1)th order discretization, let us consider a piecewise polynomial approximated
solution uh(x, t), where its restriction to cell ωi, namely uh|ωi

= uih, belongs to Pk(ωi) the set of
polynomial of degree up to k. The numerical solution then writes

uih(x, t) =
k+1∑

m=1

uim(t)σm(x), (2)

where {σm}m is a basis of Pk(ωi). The coefficients uim present in (2) are the solution moments to be
computed through a local variational formulation on ωi. To this end, one has to multiply equation
(1a) by ψ ∈ Pk(ωi), a polynomial test function, and integrate it on ωi. By means of an integration
by parts and substituting the solution u by its approximated polynomial counterpart uih, one gets

∫

ωi

∂ uih
∂t

ψ dx =

∫

ωi

F (uih)
∂ ψ

∂x
dx−

[
F ψ

]x
i+1

2

x
i− 1

2

, ∀ψ ∈ Pk(ωi). (3)

The terms
∫
ωi
F (uih)

∂ σp
∂x dx and [F σp]

x
i+1

2
x
i− 1

2

are respectively referred to as volume and surface in-

tegrals. In (3), the numerical flux function F , in addition to ensure the scheme conservation, is
the cornerstone of any finite volume or DG scheme regarding fundamental considerations as sta-
bility, positivity and entropy among others. In the context of DG schemes, this numerical flux
is defined as a function of the two states on the left and right of each interface, i.e. Fi+ 1

2
=

F(uih(xi+ 1
2
, t), ui+1

h (xi+ 1
2
, t)). This function is generally obtained through the resolution of an ex-

act or approximated Riemann problem. In the remainder of this paper, for sake of simplicity,
we make use of the very well-known local Lax-Friedrichs numerical flux which reads F(u, v) =
1
2 (F (u) + F (v)− γ(u, v) (v − u)), where γ(u, v) = max(|F ′(u)|, |F ′(v)|).

Lately, some new schemes which can be closely related to discontinuous Galerkin Spectral Element
Method (DGSEM) have been introduced and have gained in popularity. These schemes, firstly
introduced in the context of finite difference by means of Summation By Parts (SBP) operators and
Simultaneous Approximation Term (SAT), are now generally referred to as entropy stable schemes,
see for instance [20, 21, 5, 23, 7]. In [20], the authors found a remarkable equivalence of general di-
agonal norm high-order summation-by-parts operators to a subcell based finite volume formulation.
This equivalence allows them to construct provably entropy stable schemes by a specific choice of

5



the subcell finite volume fluxes. It also demonstrates the scheme conservation at the subcell scale.
This subcell finite volume formulation is remarkable in the sense that one can directly impact on
the scheme properties, as entropy stability for instance, by choosing the proper subcell finite volume
fluxes. Let us now present a similar subcell finite volume formulation for general DG schemes.

For the following proof, in equation (3) we need to substitute in the volume integral the exact interior
flux function F (uih) with some polynomial approximation F ih. To this end, we define F ih ∈ Pα(ωi),
where α ∈ N∗, as the L2 projection of function F (uih) onto Pα(ωi) as follows

∫

ωi

F ih ψ dx =

∫

ωi

F (uih)ψ dx, ∀ψ ∈ Pα(ωi). (4)

And as long as α ≥ k − 1, and that the volume integral in the right-hand side of the L2 projection
(4) is computed similarly to the volume integral in DG schemes (3), namely by an exact integration
or by the same quadrature rule for instance, the scheme (3) rewrites

∫

ωi

∂ uih
∂t

ψ dx =

∫

ωi

F ih
∂ ψ

∂x
dx−

[
F ψ

]x
i+1

2

x
i− 1

2

, ∀ψ ∈ Pk(ωi). (5)

In DG schemes, volume integrals are generally computed by means of a quadrature rule. And for
the purpose of accuracy, it is possible to demonstrate that to design a (k + 1)th order numerical
scheme, a quadrature rule exact at least for polynomial up to degree 2k is required, see [9].

Let us note that DG schemes formulation (5) also holds for the so-called collocated and nodal DG.
In those methods, the numerical solution uih(x, t), defined by means of k + 1 point values {uim}m,

writes uih(x, t) =
∑k+1

m=1 u
i
m L

i
m(x), where Lim(x) are the Lagrangian basis functions associated to

the solution points. And similarly, the approximated flux function F ih ∈ Pk(ωi) is developed onto

the same basis as F ih(x, t) =
∑k+1

m=1 F (uim)Lim(x), where F (uim) is simply the analytical flux function
apply to the solution point value uim.

Now, through analytical integration or provided with the chosen quadrature rule, the volume integral
in (5) is computed exactly as F ih

∂ ψ
∂x ∈ Pα+k−1. We can then perform an integration by part and

get what is generally referred to as the strong form of DG schemes

∫

ωi

∂ uih
∂t

ψ dx = −
∫

ωi

∂ F ih
∂x

ψ dx+
[
(F ih −F)ψ

]x
i+1

2

x
i− 1

2

, ∀ψ ∈ Pk(ωi). (6)

Remark 2.1. We will see in the remainder that the following development holds for a polynomial
flux F ih of degree α ≤ k + 1. We have then the condition α ∈ Jk − 1, k + 1K. For instance, by
means of analytical integration or if one wants to use a quadrature rule exact for polynomials up to
2k + 2 in order to reduce aliasing effect, equation (6) and the remaining demonstration would still
be true with F ih the L2 projection onto Pk+1(ωi) of function F (uih). Alternatively, for a collocated
flux approximation, one could use k+ 2 collocation points, as for instance the flux points introduced
below. Because the more general case covered by the following development is F ih ∈ Pk+1(ωi), the
polynomial flux F ih will then be assumed to be of degree k + 1 in the following. Obviously, all these
considerations vanish in the linear case, as F ih = F (uih) ∈ Pk(ωi).
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That being said, let us introduce the subcell decomposition of cell ωi. Let {x̃m+ 1
2
}m=0,...,k+1 be the

k+2 flux points. These points allow us to defined {Sim}m, the k+ 1 subcells as Sim = [x̃m− 1
2
, x̃m+ 1

2
]

for m = 1, . . . , k + 1, see Figure 1.

xi−1
2

xi+1
2

x̃k+3
2

x̃1
2
x̃3

2
x̃k+1

2

Figure 1: Subcell decomposition of ωi through k + 2 flux points.

Remark 2.2. Please note that these flux points can be chosen totally arbitrarily, and do not have
to be related to any quadrature rule nor diagonal norm matrix as it is generally the case in entropy
stable schemes [20, 21]. Furthermore, these flux points do not depend on the choice of the DG
basis functions. Let us insist on the fact that any cell subdivision would lead to exactly the same
theoretical result, namely the same DG scheme. It would only affect the definition of the subcell
finite volume numerical fluxes defined in the remainder of the present development. However, it
does have an impact of the correction procedure, see Section 4.

Now, the critical step of this demonstration is the introduction of some very specific basis functions
that we refer from now on to as subresolution basis functions. These particular functions can be
seen as the L2 projection onto Pk(ωi) of the subcell indicator functions 1m(x), which are equal to
one if x ∈ Sim and zero otherwise. Let then {φm}m=1,...,k+1 be the Pk(ωi) basis functions defined
such that

∫

ωi

φm ψ dx =

∫

Si
m

ψ dx, ∀ψ ∈ Pk(ωi). (7)

These k + 1 conditions provide us with an easy to solve linear system, see Appendix A for explicit
formula. Furthermore, it is straightforward to prove condition (7) enforces that

k+1∑

m=1

φm(x) = 1, ∀x ∈ ωi. (8)

Now, because equation (6) holds for any polynomial function ψ of degree k, let us substitute φm
for ψ in DG schemes

∫

ωi

∂ uih
∂t

φm dx = −
∫

ωi

∂ F ih
∂x

φm dx+
[
(F ih −F)φm

]x
i+1

2

x
i− 1

2

, for m = 1, . . . , k + 1.

Recalling that both
∂ uih
∂t and

∂ F i
h

∂x belong to Pk(ωi), by means of condition (7) it follows that

∂ uim
∂t

= − 1

|Sim|

([
F ih

]x̃
m+1

2

x̃
m− 1

2

−
[
φm

(
F ih −F

) ]xi+1
2

x
i− 1

2

)
, (9)

where |Sim| = |x̃m+ 1
2
− x̃m− 1

2
| is the subcell size, and uim stands for the subcell mean value

7



uim =
1

|Sim|

∫

Si
m

uih dx. (10)

The final step is the introduction of the k + 2 subcell finite volume fluxes {F̂ i
m+ 1

2

}m=0,...,k+1, from

now on referred to as reconstructed fluxes, located at the k + 2 flux points. These reconstructed
fluxes are defined through the following linear system

F̂ i
m+ 1

2

− F̂ i
m− 1

2

=
[
F ih

]x̃
m+1

2

x̃
m− 1

2

−
[
φm

(
F ih −F

) ]xi+1
2

x
i− 1

2

, for m = 1, . . . , k + 1,

F̂ i1
2

= Fi− 1
2

and F̂ i
k+ 3

2

= Fi+ 1
2
.

(11a)

(11b)

This linear system is straightforward to solve. Indeed, substituting subscript m by p in (11a) and
summing for p from 1 to m leads to

F̂ i
m+ 1

2

= F ih(x̃m+ 1
2
)−

(
1−

m∑

p=1

φp(xi− 1
2
)
)(

F ih(xi− 1
2
)−Fi− 1

2

)
−
( m∑

p=1

φp(xi+ 1
2
)
)(

F ih(xi+ 1
2
)−Fi+ 1

2

)
.

One finally gets the following values for the reconstructed fluxes

F̂ i
m+ 1

2

= F ih(x̃m+ 1
2
)− Ci−

1
2

m+ 1
2

(
F ih(xi− 1

2
)−Fi− 1

2

)
− Ci+

1
2

m+ 1
2

(
F ih(xi+ 1

2
)−Fi+ 1

2

)
, (12)

where C
i± 1

2

m+ 1
2

, the correction coefficients, are defined by means of relation (8) as

C
i− 1

2

m+ 1
2

=
k+1∑

p=m+1

φp(xi− 1
2
) and C

i+ 1
2

m+ 1
2

=
m∑

p=1

φp(xi+ 1
2
). (13)

These reconstructed fluxes (12) are nothing but the interior polynomial flux F ih(x̃m+ 1
2
) with some

correction terms taking into account the difference between the boundary values of this interior flux
and the numerical fluxes. Furthermore, making use of condition (8), it is obvious that the boundary
correction coefficients ensure relations (11b) since

C
i− 1

2
1
2

= 1 and C
i− 1

2

k+ 3
2

= 0,

C
i+ 1

2
1
2

= 0 and C
i+ 1

2

k+ 3
2

= 1.

For sake of conciseness, we restrict ourselves to a symmetric distribution of the flux points {x̃m+ 1
2
}m

around the cell center xi = 1
2(xi− 1

2
+xi+ 1

2
), namely x̃m+ 1

2
= (xi− 1

2
+xi+ 1

2
)−x̃k+ 3

2
−m. It immediately

follows that C
i+ 1

2

m+ 1
2

= C
i− 1

2

k+ 3
2
−m, for m = 0, . . . , k + 1. Let us then focus on the expression of C

i− 1
2

m+ 1
2

.

By means of the subresolution basis functions definition, see Appendix A, we are able to explicitly
express the k + 2 correction coefficients. We set B ∈ Rk+1 to be the vector defined as

Bj = (−1)j+1

(
k + j
j

)(
k + 1
j

)
,
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where

(
p
j

)
stands for the binomial coefficient

(
p
j

)
=

p!

j! (p− j)! . Let us note that vector B only

depends on the degree of approximation k, and not on the flux points position. By introducing

{ξ̃m+ 1
2
}m the flux points counterpart in the referential element [0, 1], as ξ̃m+ 1

2
=

x̃
m+1

2
−x

i− 1
2

x
i+1

2
−x

i− 1
2

, the

correction coefficients finally write

C
i− 1

2

m+ 1
2

= 1−




ξ̃m+ 1
2

(ξ̃m+ 1
2
)2

...

(ξ̃m+ 1
2
)k+1




�B. (14)

For further details of calculation, we refer to Appendix A. Let us gather all these results into the
following theorem.

Theorem 2.1. Provided the analytical calculation of volume integrals, or alternatively by means of
quadrature rule, discontinuous Galerkin schemes expressed in cell ωi as follows

∫

ωi

∂ uih
∂t

ψ dx =

∫

ωi

F (uih)
∂ ψ

∂x
dx−

[
F ψ

]x
i+1

2

x
i− 1

2

, ∀ψ ∈ Pk(ωi), (15)

can be recast into k + 1 subcell finite volume schemes as, for m = 1, . . . , k + 1

∂ uim
∂t

= − 1

|Sim|
(
F̂ i
m+ 1

2

− F̂ i
m− 1

2

)
, (16)

where the k + 2 finite volume fluxes F̂ i
m+ 1

2

, referred to as reconstructed fluxes, are defined by

F̂ i
m+ 1

2

= F ih(x̃m+ 1
2
)− Ci−

1
2

m+ 1
2

(
F ih(xi− 1

2
)−Fi− 1

2

)
− Ci+

1
2

m+ 1
2

(
F ih(xi+ 1

2
)−Fi+ 1

2

)
. (17)

In this last expression, for α ∈ Jk − 1, k + 1K, the polynomial flux F ih is either a L2 projection of
F (uih) onto Pα(ωi), or collocated at (α + 1) given points, as it is the case for collocated and nodal
DG schemes. Simple explicit expression of the correction coefficients can be found in equation (14)
or in Appendix A.

This theorem allows us to rewrite DG schemes into subcell finite volume schemes provided with
the corrected subcell fluxes. Furthermore, it proves the subcell conservation property of DG schemes.

Let us note that in this work, the k + 2 subcell finite volume fluxes F̂ i
m+ 1

2

are named the recon-

structed fluxes. We have borrowed this denomination from H. Huynh seminal paper [29] wherein he
introduces a wide range of new numerical schemes referred to as Flux Reconstruction (FR) schemes
which covered DG schemes among others. Furthermore, Theorem 2.1 is consistent with the result of
the aforementioned paper of H. Huynh. Indeed, through the k + 2 reconstructed fluxes F̂ i

m+ 1
2

, one

can define a Pk+1(ωi) polynomial reconstructed flux F̂ ih =
∑k+1

m=0 F̂
i
m+ 1

2

L̃m+ 1
2
(x), where L̃m+ 1

2
(x)

are the Lagrangian basis functions associated to the k+2 flux points x̃m+ 1
2
. By means of the subreso-

lution functions defined in (7), equations (16) can be recast into ∂tu
i
h(x, t)+∂xF̂

i
h(x, t) = 0, ∀x ∈ ωi.
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In the end, by introducing k + 1 solution points {xim}m=1,...,k+1 in cell ωi, the numerical scheme
reduces to the following very simple expression

∂ uih(xm, t)

∂t
+
∂ F̂ ih(xm, t)

∂x
= 0, for m = 1, . . . , k + 1, (18)

where the numerical solution is evaluating pointwisely at some solution points through the compu-
tation of the spatial derivative of the reconstructed flux. To use consistent notation with [29], let
us rewrite this reconstructed flux as

F̂ ih(x, t) = F ih(x, t) +
(
Fi− 1

2
− F ih(xi− 1

2
)
)
gLB(x) +

(
Fi+ 1

2
− F ih(xi+ 1

2
)
)
gRB(x), (19)

where gLB(x) and gRB(x) are respectively the left and right correction polynomial functions taking
into account the flux discontinuities, and are defined through the correction coefficients introduced

previously as gLB(x) =
∑k+1

m=0C
i− 1

2

m+ 1
2

L̃m+ 1
2
(x) and gRB(x) =

∑k+1
m=0C

i+ 1
2

m+ 1
2

L̃m+ 1
2
(x). Through a sim-

ple analysis, it is possible to prove that gRB is nothing but the left Pk+1 Radau polynomial, while
gLB is the right Pk+1 Radau polynomial, which is perfectly consistent with the results presented in
[29]. Let us briefly recall what flux reconstruction schemes are. Recently, H. Huynh [29, 30] has
introduced a new approach referred to as flux reconstruction which unifies several existing schemes.
The collocated Pk interior flux F ih is corrected, similarly to equation (19), to take into account
the flux discontinuities. With appropriate choices of correction terms, one can recover collocated
nodal DG, spectral difference scheme, as well as spectral volume method. Furthermore, the FR
versions are generally simpler and more economical than the original versions, due to the fact that
the numerical solution is simply advance in time pointwisely at some solution points through the
computation of the reconstructed flux spatial derivative. It has also paved the way to a wide range
of new numerical schemes that are stable and super convergent. This framework has recently grown
in popularity, see [60, 1, 35, 25], and is now sometimes referred to as Correction Procedure via
Reconstruction (CPR), as in [61, 22, 31, 16, 32] for instance. Further stability analysis have been
carried out through the reformulation of CPR methods using SBP operators with SAT boundary
treatment, as in [26, 27]. In [27], for Burgers equation, SBP CPR methods are further extended to
the non-diagonal norm matrix case, hence covering the case of modal basis. In [51], entropy stabil-
ity of flux reconstruction schemes has also been addressed by means of residual distribution schemes.

The main differences between the aforementioned flux reconstruction approach and the results stated
in Theorem 2.1 are that the reconstructed fluxes are used here as numerical fluxes for the subcell
finite volumes schemes, and not pointwisely to advance in time the numerical solution point values.
Discontinuous Galerkin scheme then can be reinterpreted as a finite volume scheme on subcells
with a particular definition of the numerical fluxes to be used. This demonstration is not restricted
to the frame of flux collocation, and covers the case of general DG schemes wherein integrals are
either analytically calculated or approached through the use of quadrature rules. Furthermore, the
interior polynomial counterpart of F (uih), namely F ih, can be assumed more generally to belong to
Pk+1(ωi), which can potentially reduce aliasing effect. Finally, the correction coefficients are simple
and explicitly defined, without any need of Radau polynomials.

As said in the introduction, the question of reformulating DG schemes as a subcell finite volume
method has also been recently addressed by R. Abgrall through residual distribution schemes,
[49]. The present theoretical result can then be seen as an alternative simple development, with
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explicit formula for any order of accuracy, in the one-dimensional case. As we plan to extend this
demonstration, along with the corresponding correction procedure, to the 2D unstructured grid
case, we can expect to get consistent results with the aforementioned paper.

3. A posteriori subcell limitation

By means of Theorem 2.1, we have now all the tools we need to design a subcell a posteriori
limitation for DG schemes. In few words, the reconstructed fluxes F̂ i

m+ 1
2

will be modified in a

robust way in subcells where the unlimited DG scheme has failed. Let us mention that until
now, only the semi-discrete version of schemes and their corresponding analysis were presented. To
achieve high-accuracy in time, we make use of SSP Runge-Kutta time integration method [54]. But,
in the light of the fact that these multistage time integration methods write as convex combinations
of first-order forward Euler scheme, the correction DG procedure will be presented for the simple
case of this latter time numerical scheme, for sake of simplicity. DG schemes (3) provided with
first-order forward Euler time integration writes, ∀ψ ∈ Pk(ωi)

∫

ωi

ui,n+1
h ψ dx =

∫

ωi

ui,nh ψ dx+ ∆t

(∫

ωi

F (ui,nh )
∂ ψ

∂x
dx−

[
Fn ψ

]x
i+1

2

x
i− 1

2

)
. (20)

Now, the numerical solution uih on cell ωi being assumed to be a Pk polynomial as follows

uih(x, t) =
k+1∑

m=1

uim(t)σm(x), (21)

with {σm}m any basis of Pk(ωi), we can show that this polynomial solution is uniquely defined
through its mean values on k + 1 subcells, and reversely. It is actually very simple to go from one
representation to another, namely from {uim}m, the solution moments, to {u im}m, the subcell mean
values. Indeed, defining the non-singular matrix Π such that

πmp =
1

|Sim|

∫

Si
m

σp dx, (22)

it immediately follows

Π



ui,n1

...

ui,nk+1


 =



u i,n1

...

u i,nk+1


 . (23)

Remark 3.1. This can be related to the concept of histopolant, and histopolation basis functions,
introduced in [53, 24]. Obviously, if one makes use of these particular histopolation basis functions
in the DG scheme, this projection step can be skipped.

From now on, we consider that, through relation (23), we have access to the solution submean
values, and that by means of the submean values we can also reconstruct the unique associated
polynomial, as displayed in Figure 2. We have now all the tools we need to introduce the correction
procedure. First, we assume that at time tn the numerical solution unh is satisfactory in the sens
that, on any cell ωi, the subcell mean values are admissible regarding some criteria yet to be defined.
Then, we compute un+1

h a candidate solution through the unlimited DG scheme. The third step is
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2
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u i,n
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Figure 2: Polynomial solution and its associated submean values.

crucial. Indeed, we then have to check if the new unlimited solution is admissible. If it is the case,
we can go further in time without any special treatment, otherwise we have to return to time tn

and recompute the solution locally by means of a more robust scheme. This step is crucial in the
sens that it will tell us if and where a new computation would be required.

3.1. Troubled zone detector

As said in the introduction, there is a very wide panel of already existing limitation techniques
available in the literature. This also applies to troubled zone detectors. The present work focuses
on the treatment of problematic cells and not on the detection of such cells. We have consequently
compared many detection techniques and finally kept the ones that seem to suit the most this a
posteriori subcell context.

Similarly to other a posteriori techniques [14, 18], we mainly make use of two detection criteria,
namely one ensuring the physical admissibility of the numerical solution (PAD) and another ad-
dressing the apparition of spurious oscillations (NAD). We use the same denomination that in the
abovementioned papers. Let us then recall these two criteria.

Physical admissibility detection (PAD).

• Check if the different mean values u i,n+1
m lie in a chosen convex physical admissible set (maxi-

mum principle for SCL, positivity of the pressure and density for Euler, . . . ). Entropy stability
can even be added to this admissible set.

• Check if there is any NaN values

Those are the minimum requirements if one wants to enforce code robustness. Now, in order to
tackle the issue of spurious oscillations, we make use of a local maximum principle. Indeed, through
the respect of the CFL, the solution in cell ωi at time tn+1 has to remain in the bounds of the
solution at the previous time step tn wherein

⋃i+1
j=i−1 ωj . This condition is reformulated in the

following detection criterion.

12



Numerical admissibility detection (NAD).

• Check if the following Discrete Maximum Principle (DMP) is ensured:

min
p∈J1,k+1K

(u i−1,n
p , u i,np , u i+1,n

p ) ≤ u i,n+1
m ≤ max

p∈J1,k+1K
(u i−1,n
p , u i,np , u i+1,n

p ),

for m = 1, . . . , k + 1.

This NAD criterion will enable us to address the issue of spurious oscillations at the cell level.
However, as we will see in the numerical results section, this local maximum principle will not be
triggered by spurious oscillation within the cell itself, namely at the subcell scale. These subcell
oscillations, while present, are controlled by the NAD. They thus cannot lead to instabilities. How-
ever, if one is concerned with these subcell oscillations, one can make use of the following subcell
discrete maximum principle, which it is worth to be said has no physical meaning in the context of
DG schemes on cell ωi, but only for subcell numerical scheme on Sim.

Subcell numerical admissibility detection (SubNAD).

• Check if for m = 1, . . . , k + 1:

min(u i,nm−1, u
i,n
m , u i,nm+1) ≤ u i,n+1

m ≤ max(u i,nm−1, u
i,n
m , u i,nm+1),

where u i,n0 = u i−1,n
k+1 and u i,nk+2 = u i+1,n

1 .

Let us enlighten that both NAD and SubNAD criteria rely on a maximum principle based on subcell
mean values. And because these maximum principles are not concerned with the whole polynomial
set of values, it is very well-known that one has to relax them to preserve scheme accuracy in the
presence of smooth extrema. After numerous comparison, here is the chosen detection procedure
responsible of detecting smooth extrema.

Detection of smooth extrema. This smooth extrema detection criterion is based on an idea of Van
Leer [42], which has then been generalized in [4]. This is also the criterion used in the generalized
moment limiter [62], as well as in the hierarchical slope limiter [40]. In all these aforementioned
limitation techniques, the numerical solution is supposed to exhibit a smooth extrema if at least
the linearized version of the numerical solution spatial derivative, i.e.

vh(x) = ∂xu
n+1
i + (x− xi) ∂xxun+1

i , (24)

presents a monotonous profile. In (24), ∂xu
n+1
i and ∂xxu

n+1
i are nothing but the mean values on

cell ωi respectively of ∂xu
i
h and ∂xxu

i
h. In practice, the DMP relaxation used here works as a vertex-

based limiter on vh(x). Hence, we set vL = ∂xu
n+1
i − ∆xi

2 ∂xxu
n+1
i to be the left boundary value

of vh(x) on cell ωi, as well as vLmin \max = min \max (∂xu
n+1
i−1 , ∂xu

n+1
i ) the minimum and maximum

values of the mean derivative around xi− 1
2
. We then define the left detection factor αL as following

αL =





min(1,
vLmax − ∂xu

n+1
i

vL − ∂xun+1
i

), if vL > ∂xu
n+1
i ,

1, if vL = ∂xu
n+1
i ,

min(1,
vLmin − ∂xu

n+1
i

vL − ∂xun+1
i

), if vL < ∂xu
n+1
i .

(25)
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Defining vR = ∂xu
n+1
i + ∆xi

2 ∂xxu
n+1
i and vRmin \max = min \max (∂xu

n+1
i , ∂xu

n+1
i+1 ), the right de-

tection factor αR is obtained in a similar manner than in (25). Finally, taking the minimum of
the two, i.e. α = min(αL, αR), we consider that the numerical solution presents a smooth profile
on cell ωi if α = 1. In this particular case, the NAD or SubNAD criterion is relaxed allowing the
preservation of smooth extrema along with the order of accuracy for smooth problems, see Sec-
tion 4. We have presented here the detection based on the linearized first derivative of the solution.
This would work for any higher order derivative. Actually, in practice, if any of them presents a
monotonous profile, the DMP is relaxed. Also, for numerical schemes of accuracy higher than third
order, such relaxation procedure can also be applied at the subcell level to also preserve smooth
extrema even within a cell. For schemes from first to third order, the subcell version of vh(x),

namely vmh (x) = ∂xu
i,n+1
m + (x−xm) ∂xxu

i,n+1
m where xm = 1

2(x̃m− 1
2

+ x̃m+ 1
2
), is a continuous linear

function on cell ωi. We thus lack degrees of freedom to detect a smooth extrema contained in a cell.
This technique will thus be used only for k > 3. Now that we have described the troubled subcell
detector, the correction procedure will be presented in the next subsection.

3.2. Correction

The very simple idea that forms the basis of this correction procedure is the following: if the
unlimited DG scheme has produced a numerical solution u i,n+1

h on cell ωi, which is not admissible
in subcell Sim in regards to the detection criteria presented previously, the subcell mean value
u i,n+1
m will be recomputed by means of a more robust scheme. To do so, and because unlimited DG

scheme is equivalent to subcell finite volume scheme with the appropriate high-order reconstructed
fluxes, see Theorem 2.1, we substitute on the boundaries of subcell Sim the high-order reconstructed
fluxes with some first-order finite volume numerical fluxes. The submean value u i,n+1

m will then
be recomputed by means of a simple and robust first-order finite volume scheme. This concept is
depicted in Figure 3, where the troubled subcell is colored red.

x̃k+3
2

F̂ i
k+3

2

x̃m+1
2

xi−1
2

xi+1
2

F̂ i
1
2

F̂ i
3
2

x̃1
2

F̂ i
m−1

2

F̂ i
m+1

2

F̃ i
m+1

2

x̃3
2

x̃m−1
2

F̃ i
m−1

2

Figure 3: Correction of the reconstructed flux.

Because it is of fundamental importance to preserve scheme conservation, the first left and right
neighboring subcells, colored green in Figure 3, have to be also recomputed since we have modify
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the reconstructed fluxes F̂ i
m− 1

2

and F̂ i
m+ 1

2

. The submean values u i,n+1
m−1 and u i,n+1

m+1 are then com-

puted through a finite-volume-like scheme with one first-order numerical flux and one high-order
reconstructed flux. For the remaining subcells, colored gray in Figure 3, because the corresponding
reconstructed fluxes have not been modified, there is no need to recompute them. The corresponding
submean values are hence the values obtained through the unlimited DG scheme. This a posteriori
limitation of DG schemes is summarized in the following flowchart:

1. Compute the candidate solution u i,n+1
h by means of unlimited DG schemes (20)

2. Project u i,n+1
h through (23) to get all the submean values u i,n+1

m

3. Check u i,n+1
m through the troubled zone detection criteria plus relaxation

4. If u i,n+1
m is admissible go further in time, otherwise modify the corresponding reconstructed

flux values through a first-order numerical flux as following



F̃ i
m+ 1

2

= F(u i,nm , u i,nm+1) if Sim or Sim+1 are marked,

F̃ i
m+ 1

2

= F̂ i
m+ 1

2

otherwise,

where Si0 = Si−1
k+1 and Sik+2 = Si+1

1 , as well as u i,n0 = u i−1,n
k+1 and u i,nk+2 = u i+1,n

1 .

5. Through the corrected reconstructed flux, recompute the submean values for tagged subcells
and their first neighboring subcells as

u i,n+1
m = u i,nm −

∆t

|Sim|
(F̃ i

m+ 1
2

− F̃ i
m− 1

2

).

6. By means of Π−1 and equation (23), get the new corrected polynomial solution u i,n+1
h

7. Return to point 3.

In light of this correction procedure flowchart, it is clear that the DG solution will only be af-
fected at the subcell scale. Furthermore, the limited scheme is conservative at the subcell level by
construction.

Remark 3.2. In the present correction, when needed we substitute the reconstructed flux value F̂ i
m+ 1

2

with a first-order numerical flux F(u i,nm , u i,nm+1). Obviously, other choices are possible and may even
be more appropriate, as for instance a second-order TVD numerical flux or even a WENO numerical
flux. We have presented the case of first-order correction for sake of simplicity. Some results with
second-order corrections will also be presented in the numerical results section. Practically, for the
2nd-order correction, if a subcell is marked as bad, the subcell mean value would be recomputed using
the former submean value along with the left and right subcell mean values (which can potentially
belong to the left or right DG cell) through a 2nd-order FV scheme with a classical TVD minmod
limiter. This means that the reconstructed flux values on the subcell boundaries are substituted
by 2nd-order TVD numerical fluxes, instead of first-order FV numerical fluxes for the 1st-order
correction. For higher-order FV or (W)ENO correction, a wider stencil including more neighboring
subcells would be needed to compute the corrected reconstructed flux.

The multi-dimensional extension of the theoretical reformulation of DG schemes, as well as the
corresponding limitation technique, is carried out in a 1D tensor product manner. Let us emphasize
that, even if everything follows quite naturally from the 1D case, projection or collocation of the
numerical fluxes on the cell boundaries have to be also carried out to suit the present theory. Details
are given in Appendix B.
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4. Numerical results

In this numerical results section, we make use of several widely addressed and challenging test cases
to demonstrate the performance and robustness of the DG a posteriori correction presented. In
all following test cases, if not stated differently, the simple case of local Lax-Friedrichs numerical
flux will be used for both the DG scheme and the reconstructed flux correction. Also, for sake of
security and to avoid as much as possible recursive steps in the limitation procedure, see correction
flowchart in Section 3, when a subcell is detected as bad we also mark as bad the first neighboring
subcells. It actually also enhances the quality of the numerical solutions, see Figure 7. The troubled
subcell detection is definitely the part to be improved, and should be the topic of a paper on its own.

Regarding the cell decomposition into subcells, this has no impact on the reformulation of DG
schemes into subcell finite volume method, see Figure 9(a). However, for the correction procedure,
the subdivision does has an impact, see Figure 9(b). Indeed, the use of a non-uniform subdivision,
for instance by means of the Gauss-Lobatto points, leads to better results compared to a uniform
subdivision. This is more likely the manifestation of the Runge phenomenon in the context of
histopolation, as the histopolation basis functions underlying the submean value representation,
are more oscillatory for a uniform cell subdivision. Another possible explanation could be that the
amount of correction present in the reconstructed flux definition, equation (17), is higher close to
the cell boundaries. And thus, the subcell should be more refined near the cell interfaces to take
that into account. In all following test cases, if not stated differently, we subdivide the cells by
means of Gauss-Lobatto points.

Regarding the time integration, we make use of the classical third-order SSP Runge-Kutta scheme,
see for instance [54], with a small enough CFL number. In cases where we compute rates of conver-

gence, a time step ∆t ≤ ∆x
k+1
3 is used in order to make the time error negligible in comparison to

the spatial discretization error. Otherwise, we define cfl = Ce
2 k+1 , where Ce = 0.2 for sake of safety.

The time step is then chosen as ∆t = cfl ∆x
maxu |f ′(u)| . As said in the introduction, the choice of the

CFL is less critical with the designed limitation as if the high-order DG scheme starts developing
instabilities, it will trigger the a posteriori correction and first-order FV scheme would then be used.
Even if the (k+ 1)th-order DG with 3rd-order RK time integration might be unstable for this CFL,
the corrected scheme has in practice proved to be stable.

Let us emphasize that in all figures to come, if not stated otherwise, the solution subcell mean values
are displayed at the centroid of each subcell. There is thus one dot per subcell, as in Figure 4 for
instance where nine values per cell are displayed. Furthermore, if not stated differently, the simple
case of first-order correction is used.

4.1. 1D scalar conservation laws

Let us first assess the performance and accuracy of DG schemes plus correction in the simple case
of 1D scalar conservation laws.

4.1.1. Linear advection of a smooth signal

Let us consider the linear advection ∂tu + a ∂xu = 0, where the velocity is set to a = 1. We start
from a smooth initial condition u0(x) = sin(2π x), and consider periodic boundary conditions. We
assess the scheme accuracy after one period, namely at time t = 1. In Figure 4, the numerical
solution of the ninth order scheme on only five cells is plotted. One can see that with only 5 cells,
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Figure 4: 9th order DG solution for the linear advection case on a 5 cells mesh after one period.

the corrected DG scheme is extremely accurate. Actually, the correction procedure is not activated
in this case, which proves that the relaxation criterion on smooth extrema works properly. The
rates of convergence are gathered in Table 1 and do exhibit a convergence to nine.

L1 L2

h EhL1
qhL1

EhL2
qhL2

1
20 8.07E-11 9.00 8.97E-11 9.00
1
40 1.58E-13 9.00 1.75E-13 9.00
1
80 3.08E-16 - 3.42E-16 -

Table 1: Convergence rates for the linear advection case for a 9th order DG scheme

4.1.2. Linear advection of a square signal

To assess the efficiency of the correction presented, let us start with the very simple case of the
advection of a square signal, namely u0(x) = 1 if x ∈ [0.4, 0.6] and u0(x) = 0 elsewhere. In Figure 5,
we compare the unlimited and corrected versions of the 9th order DG scheme on 10 cells after one
period. One can see that only few subcells require a correction, and there are located near the
discontinuities. In Figure 5, only the subcells corrected during the last iteration are marked in red.
Except for the early stage of the calculation, the same zones are concerned with the correction,
namely after the two discontinuities. During the first iterations, a lot more correction is however
required to ensure the numerical solution admissibility, see Figure 6. In Figure 6(a), the four central
cells are totally marked. This is yet due to the fact that for sake of safety we also mark the neigh-
boring subcells of a bad subcell. Otherwise, only one subcell over two is marked, as in Figure 6(b).
This however leads to a more oscillating solution in the end, see Figure 7(b). In all following test
problems, this safety feature is thus used.

Let us note that even if the numerical solution is perfectly monotonous at the cell level, one can
notice very small oscillations at the subcell scale, see Figure 7(a). These oscillation can not however
lead to instability as they will trigger the NAD criterion if they grow too much. Nevertheless, if
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Figure 5: 9th order DG solution for the linear advection case on a 10 cells mesh after one period.
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(a) Neighboring subcells also marked.
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(b) Only the troubled subcells are marked.

Figure 6: 9th order DG solution for the linear advection case on 10 cells after one iteration.

one wants to address these subcell oscillations, an subcell discrete maximum principle (SubNAD)
has to be used instead of a cell discrete maximum principle (NAD). In Figure 8, the subcell mean
values now exhibit a monotonous profile. However, it has been done at the expense of accuracy.
To reduce this loss of precision, we may want to use a second-order correction, namely on marked
subcell boundaries the reconstructed fluxes are substituted with second-order TVD finite volume
numerical fluxes instead of first-order ones, see Figure 8.

Now, as said in the introduction of this section, the cell subdivision does only have an impact on the
corrected version of the scheme. In Figure 9, we compare the numerical results provided three types
of cell subdivision: a uniform one where x̃m+ 1

2
= xi− 1

2
+ m

k+1 |ωi|, a cosinus distribution similarly

to Tchebychev quadrature points where x̃m+ 1
2

= xi− 1
2

+ (1 − cos(mπ
k+1)) |ωi|

2 , and a Gauss-Lobatto

distribution where the flux points x̃m+ 1
2

are nothing but the Gauss-Lobatto quadrature points. In
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Figure 7: 9th order DG solution for the linear advection case on 10 cells after one period.
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Figure 8: 9th order DG solution on a 10 cells mesh after one period: correction plus subcell DMP detection (SubNAD).

Figure 9(a), the results displayed were obtained by means of the subcell finite volume formulation
with non-corrected reconstructed fluxes. The piecewise polynomial solutions at the cell subdivision
points are plotted. The results depicted in Figure 9(a) numerically corroborate the fact that the cell
subdivision has absolutely no influence on the numerical scheme. Now, in Figure 9(b), the results
obtained through the corrected reconstructed fluxes are shown. The difference is now noteworthy.
In the light of Figure 9, it is clear that a uniform subcell distribution leads to the worse results.
Although the two other cell subdivision produce similar results, the Gauss-Lobatto subcell distri-
bution does yield the best results. This is thus the subdivision used in all remaining test cases.

We recall that in the subcell finite volume limitation presented in [18], if a subcell is detected as bad,
the numerical solution in all subcells inside this DG cell are recomputed through a finite volume
scheme. The DG polynomial has then been totally discard. In the present correction procedure,
only few subcells need to be recomputed. Elsewhere, we keep the solution computed through the
unlimited DG scheme. In Figure 10, we compare these two limitation techniques. As expected, this
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Figure 9: 9th order DG solution for the linear advection case on a 10 cells mesh after ten periods: comparison between
different subcell distribution.

new limitation outperforms the one presented in [18].
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(b) After 50 periods.

Figure 10: 9th order DG solution on 10 cells: comparison between the subcell finite volume limitation and the subcell
flux reconstruction correction.

4.1.3. Linear advection of a composite signal

Let us now address the classical case of the linear advection of a composite signal, introduced in
[37]. This signal is composed by the succession of a Gaussian, rectangular, triangular and parabolic
signals. However, because the different signal extrema are always zero and one, a limitation pro-
cedure only ensuring the preservation of the maximum principle (PAD criterion) would be enough,
as depicted in Figure 11(a). In order to assess the relevancy of the spurious oscillations detection,
namely the NAD criterion, we modify this test case as in Figure 11(b) to make it more challenging.
In Figure 12(a), we plot the numerical solution obtained with a ninth order corrected DG scheme
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(a) Classical composite signal.
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(b) Modified composite signal.

Figure 11: 9th order DG solution on 30 cells after 4 periods: correction only making use of the PAD criterion.

using only 30 cells after 4 periods, for this modified test case. One can see that even by means of
this very coarse grid, the numerical solution is extremely precise and robust. In Figure 12(a), on
the rectangular signal for instance, we can observe some slight subcell oscillations. It is however
possible to use the SubNAD criterion to ensure the monotonicity of the solution even within the
cell. A second-order correction is preferred to avoid to much accuracy loss, see Figure 12(b).
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(a) PAD + NAD and 1st order correction.
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(b) PAD + SubNAD and 2nd order correction.

Figure 12: 9th order DG solution on 10 cells after 4 periods: comparison between first-order correction and second-
order correction with SubNAD criterion.

Now, even if this paper is not concerned with doing an exhaustive review of limiting techniques
or comparison between them, we show some comparative tests to assess the performance of this a
posteriori limitation. To this end, we make use of some well-known a priori limiting strategies, as
the L. Krivodonova limiter [38], the Z.J. Wang moment limiter [62] and the X. Zhong and C.-W.
Shu WENO limiter [64]. Let us emphasize that for the latter one, we have experienced that its
scalability to very high-order schemes (above 4th order) highly depends on the coefficients in the
nonlinear weights definition. It thus makes this technique not very practical for very high-order
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DG schemes. Consequently, we will compare with our a posteriori correction technique all these
three limiters on 4th order DG, and then only the Krivodonova and Wang limiters for 9th-order
DG. Let us emphasize that in the following comparisons, the a posteriori limiting strategy is done
using 1st-order correction of the reconstructed fluxes, to be as fair as possible.

We can see on Figure 13(a) that using 200 cells, as it is generally done, all these different limiting
strategies work quite nicely for a 4th order DG scheme. However, the strong advantage of very high-
order scheme being to retain a good resolution making use of coarse grids, to assess the difference
between those limiters we now use only 30 cells. In Figure 13(b), one can see that Krivodonova
limiter as well as our correction technique are still behaving properly. Our limiting strategy seems
to be the one producing the best result.
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(a) 200 cells: cell mean values.
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(b) 50 cells: subcell mean values.

Figure 13: 4th order DG solutions provided different limitations for the linear advection case after 4 periods.

Now, to see the scalability of those limiters to very high-order schemes, we make use of the same
test case but with a 9th order scheme on only 30 cells, similarly to Figure 12. In Figure 14, we can
clearly observe that the present correction procedure outperforms the other limiting strategies.
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Figure 14: 9th order DG solutions provided different limitations for the linear advection case on 30 cells after 4
periods.
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4.1.4. Burgers equation with a smooth initial solution

Let us consider the non-linear Burgers case ∂tu + ∂x(u
2

2 ) = 0. Starting from the smooth initial
condition u0(x) = sin(2π x) on [0, 1], a stationary discontinuity located at x = 1

2 forms at time
tc = 1

2π . In Figure 15, the numerical solution obtained with the corrected 9th order DG scheme
on 10 cells is plotted at different times. Before the critical time tc, one can see that the correction
procedure is not active, as in Figure 15(b). It only activates for t ≥ tc and remains active since then
in the two DG cells surrounding the discontinuity, see Figures 15(c) and 15(d). This test case proves
that even in this extremely coarse mesh case, the discontinuous Galerkin scheme plus correction is
very precise as well as robust.
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Figure 15: 9th order DG solution for Burgers equation on a 10 cells mesh.

4.1.5. Burgers equation with shock and expansion waves collision

To demonstrate the performance and robustness of the DG a posteriori correction presented, we
introduce a new test case in the context of 1D Burgers equation which consists in a shock wave and
an expansion wave that will finally meet and form a new shock propagating at non-linear speed.
The initial data is characterized by three states as following

u0(x) =





0 if x < xL,
−1 if x ∈ ]xL, xR[,
1
2 if x > xR,

(26)
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where xR > xL. Following the characteristic lines, the entropic weak solution exhibits a shock wave
initially located at x = xL and propagating at speed S = −1

2 , and an expansion fan located initially
at xR. Before these two waves meet, the solution writes

u0(x) =





0 if x < − t
2 + xL,

−1 if x ∈ ]− t
2 + xL,−t+ xR],

x− xR
t

, if x ∈ [−t+ xR,+
t
2 + xR],

1
2 if x ≥ t

2 + xR,

(27)

This solution holds until the discontinuity meets the expansion fan, namely at time tc = 2(xR−xL).
For t ≥ tc, these two waves form a new shock moving to the left and located at xs(t) = xR −√

2(xR − xL) t. Finally, for t ≥ tc the entropic solution is defined as following

u0(x) =





0 if x < xR −
√

2(xR − xL) t,
x− xR

t
, if x ∈ ]xR −

√
2(xR − xL) t,+ t

2 + xR],
1
2 if x ≥ t

2 + xR.

(28)

Here, we take xL = 0.3 and xR = 0.7, while the computational domain is set to be [−1.2, 1]. In this
set up, the expansion and shock waves meet at time t = 0.8. At the final time t = 3.2, the shock is
located at x = −0.9 and the shock left and right values are respectively 0 and 1

2 .

In Figure 16, we compare the results obtained through a 9th order DG scheme provided Krivodonova
and Wang a priori limiters, along with this new a posteriori correction, on a 15 cells mesh at different
times. Anew, the a posteriori correction seems the only one to capture the correct solution, in this
very high-order very coarse grid case. It also illustrates once more the very good behavior of DG
schemes provided with the presented a posteriori limiting strategy.

4.1.6. Buckley non-convex flux problem

We make use of the challenging Buckley problem to illustrate some well-known problems of discon-
tinuous Galerkin schemes, as entropy and aliasing issues, see Figure 17. The Buckley equation is
defined as ∂tu + ∂xF (u) = 0, where the non-convex flux function writes F (u) = 4u2

4u2+(1−u)2
. Since

the flux function is now a complex rational function, it is not practical to analytically integrate the
volume integrals in DG schemes. Consequently, we make use a quadrature rule exact for polynomial
up to 2 k, as it is generally done. In [36], G.-S. Jiang and C.-W. Shu proved a cell entropy inequal-
ity for DG schemes for scalar conservation laws. However, this demonstration relies on the exact
calculation of the integrals, and thus does not applied if one uses quadrature rules. This remark is
depicted in Figure 17(a). We start from the initial solution u0(x) = 1 if x ∈ [−1

2 , 0] and u0(x) = 0
elsewhere. In Figure 17(a), we plot 3rd-order numerical solutions obtained by means of an unlimited
DG scheme using quadrature rule, for different mesh resolution. It is clear the numerical solution
does not converge to the entropic solution of the problem. Let us note that for this test case, global
Lax-Friedrichs numerical flux is used to ensure first-order scheme to be entropic. In Figure 17(a),
one can also observe strong spurious oscillations for x ∈ [−0.7,−0.2]. These oscillations are due to
the so-called aliasing phenomenon. For DG schemes, collocation of the interior flux or approximated
calculation of the volume integral through quadrature rule both generate errors if any of the modes
arising from the nonlinear terms lies outside the polynomial functions space. Increasing the order of
approximation will also increase this phenomenon, see Figure 17(b). Over integration could reduce
this, but for very high-order schemes the number of quadrature points required to damp these errors
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(d) t = 3.2.

Figure 16: 9th order DG solutions provided different limitations for Burgers equation on a 15 cells mesh.
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Figure 17: Unlimited DG solutions for the Buckley non-convex flux case.

make this solution not very practical. Now, we make use of this challenging test case to assess the
efficiency of the presented correction. In Figure 18, we compare, for a 9th order DG scheme on 40
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cells, the use of NAD and SubNAD criteria. In Figure 18, one can see that both treatments cure
aliasing phenomenon. However, it seems that the use of NAD criterion is not enough for the nu-
merical solution to converge to the entropic one. Making use of the SubNAD criterion allows us to
recover the entropic solution. Both first and second order corrections would converge to the correct
solution, second-order treatment only produces a slightly more accurate result. It is worth saying
that actually both NAD and SubNAD criteria would make the scheme to converge to the correct
entropic solution. With the NAD criterion, the convergence is simply slower than with SubNAD.
Another option would be to add a discrete entropy condition to the detection part, to check if some
submean value break any entropy condition.
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Figure 18: 9th order DG with 40 cells for the Buckley non-convex flux case with different detection criteria.

Let us now perform some comparisons with existing a priori limitations. In Figure 19, 4th-order
results are presented for different mesh resolutions.
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(a) 200 cells: cell mean values.
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(b) 30 cells: subcell mean values.

Figure 19: 4th order DG solutions provided different limitations for Buckley problem at time t = 0.4.

Once again, one can see on Figure 19(a) that all the limitations tested perform well on a 200 cells
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mesh, and seem to be able capture the entropic solution. Reducing the number of cells used, we
observe that only the subcell a posteriori correction procedure can capture the solution peak, see
Figure 19(b).
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Figure 20: 9th order DG solutions provided different limitations for Buckley problem on 15 cells at time t = 0.4.

Similar conclusion for 9th order DG on 15 cells, see Figure 20.

4.2. 1D Euler system

Although the whole theory presented here has been introduced in the simple case of scalar conser-
vation laws, the extension to the system case is perfectly straightforward. The only part which may
differ is the troubled detection part. For the physical admissibility detection (PAD), we consider
that a solution is physically admissible if the density and the internal energy are strictly positive.
For the numerical admissibility detection (NAD), the natural system counterpart would be to apply
the previously introduced detection criteria to the Riemann invariants. However, in the non-linear
system case, those quantities are not easy to get nor to manipulate. We could have use a linearized
version of the Riemann invariants, as in [59] for instance, but for sake of simplicity we naively apply
the NAD or SubNAD criteria only to the density. Also, the simple local Lax-Friedrichs (Rusanov)
numerical flux will be used in the computations.

4.2.1. Smooth isentropic flow problem

To test the accuracy of DG scheme plus correction, we make use of a smooth test case initially
introduced in [58]. This example has been derived in the isentropic case, for the perfect gas equation
of state with the polytropic index γ = 3. In this special situation, the characteristic curves of the
Euler equations become straight lines, and the governing equations reduce to two Burgers equations.
It is then simple to solve analytically this problem. Here, we modify the initial data to yield a more
challenging example, as

ρ0(x) = 1 + 0.9999999 sin(πx), u0(x) = 0, p0(x) = ρ0(x)γ , x ∈ [−1, 1],

provided with periodic conditions. This means that initially ρ0(−1
2) = 1.E − 7 and p0(−1

2) =
1.E − 21. The density and pressure being so close to zero, any numerical scheme not ensuring
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a positivity preservation would fail. This is the case of unlimited DG schemes. In Figure 21,
numerical solutions obtained by means of the 5th order corrected DG scheme are depicted at time
t = 0.1, using 10 cells. One can remark that the a posteriori correction is indeed active in the low
density/pressure zone.
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Figure 21: 5th order corrected DG solution for the smooth flow problem on 10 cells.

In Table 2, we gather the global errors and rates of convergence related to the 5th order scheme,
along with the time average percentage of corrected subcells. The results confirm the expected
fifth-order rate of convergence, even though the solution has been locally corrected.

L1 L2 Average % of
h EhL1

qhL1
EhL2

qhL2
corrected subcells

1
10 8.59E-4 5.80 1.17E-3 5.82 4.21 %
1
20 1.48E-5 4.35 2.02E-5 4.18 6.87 %
1
40 9.09E-7 4.88 1.38E-6 4.87 3.31%
1
80 3.09E-8 4.95 4.73E-8 4.86 2.50 %
1

160 1.00E-9 - 1.63E-9 - 1.12%

Table 2: Rate of convergence computed on the pressure in the case of the smooth isentropic problem at time t = 0.1,
for the 5th corrected DG scheme.

We can also notice in the light of Table 2 that refining the mesh, the percentage number of subcells
to be recomputed decreases. One could have expected such conclusion since the number of subcells
located in the very low density/pressure region remains essentially constant, while the global number
of subcells increases.

4.2.2. Sod shock tube problem.

We consider now the classical Sod shock tube problem, [55]. At the initial time, two states are
separated by an interface located at x = 0.5. The left state is a high pressure fluid characterized by
(ρ0
L, p

0
L, u

0
L) = (1, 1, 0), the right state is a low pressure fluid defined by (ρ0

R, p
0
R, u

0
R) = (0.125, 0.1, 0).

The gamma gas law is defined with γ = 7
5 . In Figure 22, results obtained by means of 9th order DG
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scheme using only 10 cells are displayed. In Figure 22(a), the standard correction is used, namely
making use of PAD and NAD criteria along with first-order flux correction. With only 10 cells, we
can already remark how accurate the scheme is. The shock is captured in only one cell, and actually
in only one subcell. This again demonstrates the very high potential of high-accurate scheme, as
well as the presented subcell correction procedure. One can yet remark small subcell oscillations.
This phenomenon can be tackled by use of a subcell discrete maximum principle (SubNAD), as in
Figure 22(b). The solution is now monotonous even inside the cell, at the cost of a slight accuracy
loss especially in the contact discontinuity region, even with 2nd-order correction.
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(a) PAD + NAD and 1st order correction.
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(b) PAD + SubNAD and 2nd order correction.

Figure 22: 9th order DG solution for the Sod shock tube problem on 10 cells: comparison between first-order correction
and second-order with SubNAD criterion.

Let us emphasize that this a posteriori limitation procedure is not limited to the case of very high-
order of accuracy. It also preforms very well at second or third order. See for instance Figure 23
where the third-order numerical solution on 100 cells is depicted.
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Figure 23: 3rd-order DG solutions for the Sod shock tube problem on 100 cells: cell mean values.
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4.2.3. Shock acoustic-wave interaction problem.

The next test case, introduced initially by C.-W. Shu and S. Osher in [54], consists in the interaction
of a shock wave and an acoustic wave. The initial data read

(ρ0, u0, p0) =

{
(3.857143, 2.629369, 10.333333), x < −4,
(1 + 0.2 sin(5x), 0, 1) , x ≥ −4.

, x ∈ [−5, 5].

In this test case, it is critical to achieve high-order accuracy if one hopes to capture this very
oscillatory solution. In Figure 24, 7th-order results on 50 cells are presented for both first and
second order corrections, with SubNAD detection criterion. In Figure 24(b), the difference between
the two corrections is tremendous. Indeed, in this test case, especially for coarse grids, the wave
interaction takes place in only one or two cells. Consequently, high accuracy is indeed required to
capture correctly the solution. One could expect even better results with higher order corrections,
by means for instance of high-order WENO numerical fluxes in the subcell limitation.
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Figure 24: 7th-order corrected DG solutions on 50 cells for the oscillating shock tube problem: comparison between
first and second order corrections.

To demonstrate one last time that the presented correction does also exhibit excellent results for
lower order schemes, we display in Figure 25 the third-order numerical solution for a 200 cells mesh.

4.2.4. Blast waves interaction problem.

The blast waves interaction problem is a standard low energy problem involving shocks, generally
used to assess the robustness of gas dynamics schemes. The initial data read

ρ0(x) = 1, u0(x) = 1, p0(x) =





103, 0 < x < 0.1,
10−2, 0.1 < x < 0.9,
102, 0.9 < x < 1.0.

, x ∈ [0, 1].

The fluid under consideration is described by the ideal gas equation of state with γ = 1.4, and
reflective conditions are applied to the left and right boundaries of the domain. The resulting
solution at time t = 0.038 is quite complex, but yet there are no smooth regions where high-
order schemes may express their potential and outclass low order schemes. However, to still assess
the advantage of high-order on low-order, as well as depict the good behavior of the presented
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Figure 25: 3rd-order corrected DG solutions on 200 cells for the oscillating shock tube problem: cell mean values.

limitation technique, let us first consider a quite coarse grid. In Figure 26, the density computed
with 60 uniform cells, with DG schemes from third-order to ninth-order schemes, are compared with
referential solution. This reference solution has been obtained using a second-order scheme with
10000 grid points.
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Figure 26: Corrected DG solutions, from 3rd to 9th order, on 60 cells for the blast waves problem.

One can note, even in this totally non-smooth solution case, a substantial gain in accuracy increasing
the order of approximation. And even though the difference between fifth and ninth order results
are slight for this test case, it has the benefit to demonstrates the strong robustness of the presented
correction, for any order of approximation.
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4.3. 2D scalar conservation laws

To conclude this numerical results section, we present some two-dimensional computational tests
for the simple case of 2D scalar conservation laws.

4.3.1. Linear advection of a smooth signal

Let us consider the linear advection case ∂tu+A �∇u = 0, where the velocity is set to A = (1, 1)t.
We start from a smooth initial condition u0(x) = sin(2π (x + y)). We consider periodic boundary
conditions. We assess the scheme accuracy after one period, namely at time t = 1. In Figure 27, the
numerical solution obtained by means of sixth-order scheme on a 5× 5 Cartesian grid is displayed.
In all figures to come, we plot subcell mean values. This is why, in Figure 27(a), one can notice
6× 6 subcells per cell.
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-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 exact solution

6th limited DG
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Figure 27: Linear advection with 6th DG scheme and 5 × 5 grid after one period.

We see that with only a 5 × 5 grid, the numerical scheme is extremely accurate. The rate of
convergence are gathered in Table 3 and do exhibit a convergence to six.

L1 L2

h EhL1
qhL1

EhL2
qhL2

1
5 2.10E-6 6.23 2.86E-6 6.24
1
10 2.79E-8 6.00 3.77E-8 6.00
1
20 3.36E-10 - 5.91E-10 -

Table 3: Convergence rates for the linear advection case for a 6th order DG scheme

4.3.2. Solid body rotation of a composite signal

We make use of the classical test case taken from [43], which corresponds to the two-dimensional
extension of the composite signal presented in Section 4.1.3. Let us then consider a divergence-free
velocity field corresponding to a rigid rotation, defined by A = (1

2 − y, x− 1
2)t. We apply this solid
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body rotation to the initial data displayed in Figure 28(a), which includes both a plotted disk, a
cone and a smooth hump.
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(b) Numerical solution.

Figure 28: 6th order corrected DG solution for the rigid rotation case on a 15 × 15 grid after one full rotation.

In the light of the results depicted in Figures 28 and 29, we can note the tremendous precision of
the numerical solution using only 15 × 15 cells, which is furthermore totally oscillation free. This
anew demonstrates the very high capability of the correction procedure presented.

4.3.3. Burgers equation with a smooth initial solution

Let us consider the non-linear Burgers case ∂tu + ∂xF (u) + ∂yG(u) = 0, where the fluxes write
F (u) = G(u) = 1

2 u
2. Starting from the smooth initial condition u0(x) = sin(2π (x, y)) on [0, 1]2,

two stationary discontinuities form along the lines {(x, y) ∈ [0, 1]2, x + y = 1
2} and {(x, y) ∈

[0, 1]2, x+ y = 3
2}. It is worth mentioning that unlimited DG scheme crashes in this case. Indeed,

as depicted in Figure 30, before the formation of the shocks the analytical solution is very well
reproduced. But not long after the apparition of the two discontinuities, spurious oscillations
amplify and make the code crash. In Figure 31, the numerical solution obtained with the 6th order
limited DG scheme is plotted at time t = 0.5. Firstly, the computational code is now able to
simulate the test problem until the final time, and the depicted results again prove that even in this
extremely coarse mesh case, the corrected DG scheme is very precise as well as robust.

4.3.4. KPP problem

To close this numerical results section, we now turn our attention to non-linear conservation laws
with non-convex fluxes. To this end, we consider the KPP problem proposed by Kurganov, Petrova,
Popov (KPP) in [39] to test the convergence properties of some WENO schemes in the context of
non-convex fluxes. For this particular problem, the flux functions are given by F (u) = sin(u) and
G(u) = cos(u). Considering the computational domain [−2, 2] × [−2.5, 1.5], the initial condition
reads as follows

u0(x) =

{
7π
2 if x < 1

2 ,
π
4 if x > 1

2 .
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(a) Solution profile for y = 0.25.
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(b) Solution profile for y = 0.75.
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(c) Solution profile for x = 0.25.

Figure 29: 6th order corrected DG solution for the rigid rotation case on a 15 × 15 grid after one full rotation.
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Figure 30: 6th order unlimited DG solution for 2D Burgers equation on a 10 × 10 mesh.
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Figure 31: 6th order corrected DG solution for 2D Burgers equation on a 10 × 10 mesh at time t = 0.5.
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Figure 32: 6th order corrected DG solution for 2D Burgers equation on a 10×10 mesh at t = 0.5: profile along x = y.

This test is very challenging to many high-order schemes as the solution has a two-dimensional
composite wave structure. And generally, to be able to capture such rotation composite structure,
very fine grids are used. Here, by means of 6th order limited DG scheme, we make use of a 30× 30
Cartesian mesh, which is very coarse in this quite complex situation. Let us note that similarly
to the 1D Buckley test case, we use here global Lax-Friedrichs numerical flux as well as SubNAD
criterion for the purpose of entropy. Results, displayed in Figure 33, are once more very satisfactory.
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Figure 33: 6th order corrected DG solution for the KPP problem on a 30 × 30 at time t = 1: subcell mean values.

5. Conclusion

The aim of this paper is to present a new correction technique for discontinuous Galerkin schemes.
This a posteriori correction procedure relies on the expression of DG schemes as a finite volume
scheme on a subgrid. By means of this theoretical part, we modify at the subcell level the so-
called reconstructed fluxes only where the unlimited DG scheme has failed. Consequently, only
very few subcells require this particular treatment. For the remaining subcells, the submean values
obtained through the unlimited DG method are kept, as they have been detected as admissible by
the troubled zone criteria. This correction procedure allows us to retain as much as possible the
very precise subcell resolution of DG schemes, along as addressing the issues of spurious oscillations,
non-entropic behavior and aliasing phenomenon. A wide number of test cases have been used to
depict the good performance and robustness of the presented correction technique.

Regarding the potential advantages of an a posteriori limiting strategy compared to a priori lim-
iters, because the troubled zone detection is performed a posteriori, the correction can be done
only where it is absolutely necessary. Furthermore, maximum principle preservation or positivity
preservation is included without any additional effort, while it is generally not the case of a priori
limitations. Any other property can be added as long as the admissibility set is convex (entropy can
thus be added). Their scalability to any order of accuracy is also perfectly natural. Let us finally
emphasize that the new correction procedure presented along this paper is totally parameter free.

In the future, we intend to extend this a posteriori correction technique to the unstructured grid
case. To achieve such extension, we have to be able to rewrite DG schemes as a subcell finite
volume scheme also on unstructured cells. Higher order subcell corrections, as WENO for instance,
could also be investigated. We also plan to use this reconstructed flux correction framework in
a Flux-Corrected Transport (FCT) frame, in order to obtain an automatic very high-order and
monotonicity preserving scheme. Finally, the troubled zone detection should also be the topic of a
paper on its own, with potentially incorporation of an entropy criterion.
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Appendices

A. Subresolution basis functions and correction coefficients

This appendix aims at giving further details related to the subresolution basis functions and the
correction coefficients. First, let us introduce the following change of variable

[0, 1] −→ ωi = [xi− 1
2
, xi+ 1

2
],

ξ −→ x = xi− 1
2

+ ξ (xi+ 1
2
− xi− 1

2
).

Let then set φm(x(ξ)) = ϕm(ξ) =
∑k

p=0 a
(m)
p ξp, such that

∫ 1

0
ϕm ξ

j dξ =

∫ ξ̃m

ξ̃m−1

ξj dξ, for j = 0, . . . , k.

These k + 1 equations lead to the linear system HC(m) = ΛD(m), where H is an Hilbert matrix,

C(m) is the vector containing the a
(m)
p coefficients, Λ is the diagonal matrix such that Λjj = 1

j and

D(m) is defined as follows

D(m) =




ξ̃m − ξ̃m−1

(ξ̃m)2 − (ξ̃m−1)2

...

(ξ̃m)k+1 − (ξ̃m−1)k+1


 .

Recalling that Hilbert matrices are symmetric, hence also H−1 is. The subresolution basis functions
finally read as follows

ϕm(ξ) = D(m) � ΛH−1




1
ξ
...
ξk


 . (A.1)

Let us note that the expression of the inverse of an Hilbert matrix is quite complex. However,
recalling the correction coefficients definition

C
(m)

i− 1
2

=

k+1∑

p=m+1

ϕp(0) and C
(m)

i+ 1
2

=

m∑

p=1

ϕp(1),

one can see that only the subresolution functions values in zero and one are needed. Moreover, if
we consider a symmetric distribution of the flux points around the cell center, i.e. ξp = 1− ξk+1−p,
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for p = 0, . . . , k + 1, it is then easy to understand only ϕp(0) is required, as ϕp(1) = ϕk+2−p(0),

for p = 1, . . . , k + 1. It also implies that C
(m)

i+ 1
2

= C
(k+1−m)

i− 1
2

, for m = 0, . . . , k + 1. In the end, the

correction coefficients can be put into the following expression

C
(m)

i− 1
2

=




k+1∑

p=m+1

D(m)


 � ΛH−1




1
0
...
0


 . (A.2)

Consequently, in regards to equation (A.2), only the first column of H−1 is needed. By introducing
the vector B = ΛH−1 (1, 0, . . . , 0)t, and noting that B � (1, . . . , 1)t = 1, one gets the following very

simple expression of C
(m)

i− 1
2

C
(m)

i− 1
2

= 1−




ξ̃m
(ξ̃m)2

...

(ξ̃m)k+1


 �B.

B. Two-dimensional extension

The multi-dimensional extension is carried out in a 1D tensor product manner. Even though only
the 2D version of the scheme and limiter is presented here, the 3D case follows in a similar fashion.
Let us first recall discontinuous Galerkin scheme in the case of a two-dimensional scalar conservation
laws. Let u = u(x, t), for x ∈ ω ⊂ R2, and t ∈ [0, T ], be solution of the following two-dimensional
scalar conservation laws





∂ u

∂t
+∇ � F (u) = 0, (x, t) ∈ ω × [0, T ],

u(x, 0) = u0(x), x ∈ ω,

(B.1a)

(B.1b)

where u0 is the initial data and F (u) = (F (u), G(u))t stands for the 2D flux function. Similarly to
the 1D case, let {ωi,j}i,j be a partition of the computational domain ω. Here, ωi,j = [xi− 1

2
, xi+ 1

2
]×

[yj− 1
2
, yj+ 1

2
] denotes a generic computational cell. We also introduce a partition of the time domain

0 = t0 < t1 < ... < tn < ... < tN = T and the time step ∆tn = tn+1−tn. In order to obtain a (k+1)th

order discretization, let us consider a piecewise polynomial approximated solution uh(x, y, t), where
its restriction to cell ωi,j , namely uh|ωi,j

= u i,jh , belongs to Pkx([xi− 1
2
, xi+ 1

2
]) × Pky([yj− 1

2
, yj+ 1

2
]).

Here, Pkx and Pky are the set of polynomials of degree up to k respectively in variable x and y. The

numerical solution u i,jh then writes

uih(x, y, t) =
k+1∑

m,n=1

u i,jm,p(t)σ
x
m(x)σyp(y), (B.2)

where {σxm}m and {σyp}p are basis respectively of Pkx([xi− 1
2
, xi+ 1

2
]) and Pky([yj− 1

2
, yj+ 1

2
]). Performing

a local variation formulation of equation (B.1) with any test function ψ ∈ Pkx×Pky , and introducing
the numerical fluxes F and G, one get the general form of DG schemes
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∫

ωi,j

∂ u i,jh
∂t

ψ dV =

∫

ωi,j

(
F (u i,jh )

∂ ψ

∂x
+G(u i,jh )

∂ ψ

∂y

)
dV −

∫

∂ωi,j

ψ (F nx + G ny) dS, (B.3)

where n = (nx, ny)
t is the unit outward normal of ∂ωi,j . On a Cartesian grid, this last expression

can be rewritten as

∫

ωi,j

∂ u i,jh
∂t

ψ dV =

∫

ωi,j

(
F (u i,jh )

∂ ψ

∂x
+G(u i,jh )

∂ ψ

∂y

)
dV

−
∫ y

j+1
2

y
j− 1

2

[
F ψ

]x
i+1

2

x
i− 1

2

dy −
∫ x

i+1
2

x
i− 1

2

[
G ψ
]y

j+1
2

y
j− 1

2

dx.

(B.4)

Following the 1D case steps, we will now rewrite DG schemes (B.4) as a finite volume scheme
on a subgrid. To this end, we need to substitute the interior fluxes F (u i,jh ) and G(u i,jh ) with some

polynomial counterparts F i,j
h and G i,j

h , which can either be a collocated version of the interior fluxes
as in nodal DG for instance, or their L2 projection to fit the standard DG framework. Similarly to
the 1D, see Remark 2.1, we consider interior polynomial fluxes F i,j

h ∈ Pαx ×Pky and G i,j
h ∈ Pkx×Pαy ,

with α ∈ Jk − 1, k + 1K.

Remark B.1. Likewise the interior fluxes, we also need to replace in (B.4) the numerical fluxes

Fi± 1
2

and Gj± 1
2

by some polynomial counterparts F i± 1
2

h and G j±
1
2

h respectively in Pky and Pkx, again

through collocation or L2 projection.

Providing these polynomial fluxes, and by means of an integration by parts, DG schemes (B.4)
rewrite

∫

ωi,j

∂ u i,jh
∂t

ψ dV = −
∫

ωi,j

ψ

(
∂ F i,j

h

∂x
+
∂ G i,j

h

∂y

)
dV

+

∫ y
j+1

2

y
j− 1

2

[ (
F i,j
h −Fh

)
ψ
]x

i+1
2

x
i− 1

2

dy −
∫ x

i+1
2

x
i− 1

2

[ (
G i,j
h − Gh

)
ψ
]y

j+1
2

y
j− 1

2

dx.

(B.5)

The next step relies on the subdivision of cell ωi,j into (k + 1)2 subcells, as in Figure B.34, where

a generic subcell S i,j
m,p is defined as S i,j

m,p = [x̃m− 1
2
, x̃m+ 1

2
] × [ỹp− 1

2
, ỹp+ 1

2
]. Likewise the 1D case, we

introduce similar subresolution basis functions {φxm(x)}m=1,...,k+1 and {φyp(y)}m=1,...,k+1. Setting in
DG schemes (B.5) the test function to be ψ(x, y) = φxm(x)φyp(y), it immediately follows that

|S i,j
m,p|

∂ u i,jm,p
∂t

= −
∫ ỹ

p+1
2

ỹ
p− 1

2

([
F i,j
h (., y)

]x̃
m+1

2

x̃
m− 1

2

−
[ (
F i,j
h (., y)−Fh(., y)

)
φxm(.)

]x
i+1

2

x
i− 1

2

)
dy

−
∫ x̃

m+1
2

x̃
m− 1

2

([
G i,j
h (x, .)

]ỹ
p+1

2

ỹ
p− 1

2

−
[ (
G i,j
h (x, .)− Gh(x, .)

)
φyp(.)

]y
j+1

2

y
j− 1

2

)
dx,

(B.6)

where |S i,j
m,p| = |x̃m+ 1

2
− x̃m− 1

2
| × |ỹp+ 1

2
− ỹp− 1

2
| is the subcell volume, and u i,jm,p the mean value of

the polynomial solution u i,jh on subcell S i,j
m,p. Finally, we introduce the polynomial reconstructed

fluxes F̂ i,j
h ∈ Pk+1

x × Pky and Ĝ i,j
h ∈ Pkx × Pk+1

y such that, for m = 0, . . . , k + 1 and p = 0, . . . , k + 1
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Figure B.34: Subdivision of cell ωi,j into (k + 1)2 subcells.





F̂ i,j
h (x̃m+ 1

2
, y) = F i,j

h (x̃m+ 1
2
, y)− Ci−

1
2

m+ 1
2

(
F i,j
h (xi− 1

2
, y)−F i− 1

2
h (y)

)
− Ci+

1
2

m+ 1
2

(
F i,j
h (xi+ 1

2
, y)−F i+ 1

2
h (y)

)
,

Ĝ i,j
h (x, ỹp+ 1

2
) = G i,j

h (x, ỹp+ 1
2
)−Dj− 1

2

p+ 1
2

(
G i,j
h (x, yj− 1

2
)− G j−

1
2

h (x)

)
−Dj+ 1

2

p+ 1
2

(
G i,j
h (x, yj+ 1

2
)− G j+

1
2

h (x)

)
,

(B.7)

where the correction coefficients C
i± 1

2

m+ 1
2

and D
j± 1

2

p+ 1
2

write





C
i− 1

2

m+ 1
2

=
k+1∑

q=m+1

φxq (xi− 1
2
) and C

i+ 1
2

m+ 1
2

=
m∑

q=1

φxq (xi+ 1
2
),

D
j− 1

2

p+ 1
2

=

k+1∑

q=p+1

φyq(yj− 1
2
) and D

j+ 1
2

p+ 1
2

=

p∑

q=1

φyq(yj+ 1
2
).

(B.8)

In the end, DG schemes (B.4) can be reformulated as a finite volume scheme on a subgrid, provided
the fluxes defined in (B.7), as

∂ u i,jm,p
∂t

= − 1

|S i,j
m,p|



∫ ỹ

p+1
2

ỹ
p− 1

2

[
F̂ i,j
h (., y)

]x̃
m+1

2

x̃
m− 1

2

dy +

∫ x̃
m+1

2

x̃
m− 1

2

[
Ĝ i,j
h (x, .)

]ỹ
p+1

2

ỹ
p− 1

2

dx


 . (B.9)

To end up with a more concise and elegant formulation of equation (B.9), let us introduce the
following quantities
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



F̂ i,j

m+ 1
2
,p

=
1

|ỹp+ 1
2
− ỹp− 1

2
|

∫ ỹ
p+1

2

ỹ
p− 1

2

F̂ i,j
h (x̃m+ 1

2
, y) dy, ∀ m ∈ J0, k + 1K, p ∈ J1, k + 1K,

Ĝ i,j

m,p+ 1
2

=
1

|x̃m+ 1
2
− x̃m− 1

2
|

∫ x̃
m+1

2

x̃
m− 1

2

Ĝ i,j
h (x, ỹp+ 1

2
) dx, ∀ m ∈ J1, k + 1K, p ∈ J0, k + 1K.

(B.10)

These definitions allow us to rewrite (B.9) in a more compact form as

∂ u i,jm,p
∂t

= −

(
F̂ i,j

m+ 1
2
,p
− F̂ i,j

m− 1
2
,p

)

|x̃m+ 1
2
− x̃m− 1

2
| −

(
Ĝ i,j

m,p+ 1
2

− Ĝ i,j

m,p− 1
2

)

|ỹp+ 1
2
− ỹp− 1

2
| . (B.11)

Now, by means of this new formulation of DG schemes (B.11), we can finally introduce in few words
the 2D version of the a posteriori correction procedure. Making use of the same troubled zone de-
tectors presented in the 1D configuration, if a subcell mean value un+1, i,j

m,p computed through the
unlimited DG scheme is marked as non-admissible, this value will be reevaluated through a first-
order finite volume scheme. In other words, the reconstructed fluxes F̂ i,j

m− 1
2
,p

and F̂ i,j

m+ 1
2
,p

will be

respectively replaced by F(un, i,jm−1,p, u
n, i,j
m,p ) and F(un, i,jm,p , u

n, i,j
m+1,p), and Ĝ i,j

m,p− 1
2

and Ĝ i,j

m,p+ 1
2

replaced

by G(un, i,jm,p−1, u
n, i,j
m,p ) and G(un, i,jm,p , u

n, i,j
m,p+1). The face neighboring subcells also require to be re-

computed for this correction procedure to ensure a conservation property at the subcell scale, see
Figure B.35.

x̃k+3
2

ỹp+1
2

ỹk+3
2

x̃m+1
2

x̃3
2

x̃1
2

x̃m−1
2

ỹ3
2

ỹ1
2

ỹp−1
2

Figure B.35: Troubled subcell correction: in red the troubled subcell and in green the first face neighbors to also
recompute.
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Remark B.2. It is worth mentioning that since ∀x, F̂ i,j
h (x, .) ∈ Pky, the y−mean value F̂ i,j

m,p defined

in (B.10) can be modified without impacting the other y−mean values F̂ i,j
m,q, ∀ q ∈ J1, k + 1K \ {p}.

Similar consideration holds for Ĝ i,j
m,p. This is critical for the scheme conservation.
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