
Cell-Centered Discontinuous Galerkin discretization for

two-dimensional Lagrangian hydrodynamics

François Vilara

aCEA CESTA, BP 2, 33 114 Le Barp, France

Abstract

We present a cell-centered discontinuous Galerkin discretization for the two-
dimensional gas dynamics equations written using the Lagrangian coordi-
nates related to the initial configuration of the flow, on general unstructured
grids. A finite element discretization of the deformation gradient tensor is
performed ensuring the satisfaction of the Piola compatibility condition at
the discrete level. A specific treatment of the geometry is done, using finite
element functions to discretize the deformation gradient tensor. The Piola
compatibility condition and the Geometric Conservation law are satisfied by
construction of the scheme. The DG scheme is constructed by means of a
cellwise polynomial basis of Taylor type. Numerical fluxes at cell interface
are designed to enforce a local entropy inequality.

Keywords: DG schemes, Lagrangian hydrodynamics, initial configuration,
Piola compatibility condition, deformation gradient tensor.

1. Introduction

The discontinuous Galerkin (DG) methods are locally conservative, stable
and high-order accurate methods which represent one of the most promising
current trends in computational fluid dynamics [2, 3]. They can be viewed as
a natural high-order extension of the classical finite volume methods. This
extension is constructed by means of a local variational formulation in each
cell, which makes use of a piecewise polynomial approximation of the un-
knowns. In the present work, we describe a cell-centered DG scheme for
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the two-dimensional system of gas dynamics equations written in the La-
grangian form, on general unstructured grids. In this particular formalism,
a computational cell moves with the fluid velocity, its mass being constant,
thus contact discontinuity are captured very sharply.
The aim of this work consists in extending the formalism presented in [15, 12]
to the two-dimensional gas dynamics equations written using the Lagrangian
coordinates related to the initial configuration of the flow. In this framework,
the computational grid is fixed, however one has to follow the time evolution
of the Jacobian matrix associated to the Lagrange-Euler flow map namely
the gradient deformation tensor. The flow map is discretized by means of
continuous mapping, using a finite element basis. This provides an approxi-
mation of the deformation gradient tensor which satisfies the Piola identity.
The discretization of the physical conservation laws for the momentum and
the total energy relies on a discontinuous Galerkin method. The main fea-
ture of our DG method consists in using a local Taylor basis to express the
approximate solution in terms of cell averages and derivatives at cell cen-
troids [7]. The explicit Runge-Kutta method that preserves a total variation
diminishing property is employed to perform the time discretization [2]. The
monotonicity is enforced by limiting the coefficients in the Taylor expansion
in a hierarchical manner extending the vertex based slope limiter developed
in [7, 16]. Let us note that the limitation procedure is applied using the
characteristic variables projected onto the flow velocity and its orthogonal
direction. We also demonstrate that our scheme, in its semi-discrete form,
satisfies a global entropy inequality. This method has been developed up
to the second order and its robustness and accuracy will be assessed using
several relevant test cases.

2. Kinematics of fluid motion

2.1. Lagrangian and Eulerian descriptions

Let us introduce the d-dimensional Euclidean space Rd, where d is an integer
ranging from 1 to 3. Let D be a region of Rd filled by a moving fluid. The
fluid flow is described mathematically by the continuous transformation, Φ,
of D into itself as

Φ : X −→ x = Φ(X, t). (1)

Here, t, which is a non-negative real number, denotes the time and X =
(X, Y, Z) is the position at time t = 0 of a particle moving with the fluid which
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occupies the position x at time t > 0. By definition Φ satisfies Φ(X, 0) = X.
For a fixed X, the time evolution of (1) describes the trajectory of a fluid
particle initially located at X. Let us consider ω = ω(t) a moving sub-region
of D at time t. The set ω corresponds to the image of a fixed sub-region Ω
in the flow map with ω = {x = Φ(X, t)|X ∈ Ω}. The boundaries of ω and
Ω are respectively ∂ω and ∂Ω, and their unit outward normals are n and N ,
refer to Figure 1. At this point, we can introduce the two usual descriptions
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Figure 1: Notation for the flow map.

of the flows, namely the Lagrangian description and the Eulerian description.
The Lagrangian description consists in observing the fluid by following the
motion of fluid particles from their initial location. On the other hand the
Eulerian description consists in observing the fluid at fixed locations in the
space.
In the present work, we are interested by the gas dynamics equations written
the Lagrangian framework

ρ
d

dt
(
1

ρ
)−∇x � U = 0, (2a)

ρ
d U

dt
+∇xP = 0, (2b)

ρ
d E

dt
+∇x � (PU ) = 0, (2c)

where ρ is the density of the fluid, U its velocity and E its total energy.
Here, d

dt
denotes the material time derivative. The thermodynamic closure
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of this system is obtained through the use of an equation of state, which
writes P = P (ρ, ε) where ε is the specific internal energy, ε = E − 1

2
U 2. For

numerical application, we use a gamma gas law, i.e., P = ρ(γ − 1)ε where γ
is the polytropic index of the gas.
We made the choice of working on the initial configuration of the flow to
avoid some difficulties inherent to the moving mesh scheme, as dealing with
curvilinear geometries, in the case of third order scheme. To do so, we have to
express the differential operators in (2a), (2b) and (2c) in terms of Lagrangian
coordinates and consequently firstly characterize more precisely the motion
of the fluid.

2.2. Differential operators discretization

The Jacobian matrix is used to characterize the fluid flow. This matrix also
named the deformation gradient tensor is defined in terms of the Lagrangian
variables as

F = ∇XΦ = ∇Xx. (3)

To ensure that the relation between the two configurations holds, we make
the fundamental assumption that this matrix is invertible and its determi-
nant, J , satisfies J = det F > 0 since F(X, 0) = Id where Id denotes the
identity tensor. In some extreme cases of strong shocks or vortexes, the cells
may tangle or present some crossed points. In these cases, J could be neg-
ative. To correct this phenomenon, an ALE approach could be needed, but
in this case not by working on the shape of the deformed cells but directly
on the deformation gradient tensor properties. Let dV and dX denote a
Lagrangian volume element and an infinitesimal displacement, and dv and
dx their corresponding quantities in the Eulerian space through the transfor-
mation of the flow. These volumes and displacements can be related through
the following formulas

dv = JdV,

dx = FdX.

These formulas show that the Jacobian is a measure of the volume change and
the deformation gradient tensor quantifies the change of shape of infinitesimal
vectors through the fluid motion.
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The Nanson formula gives the relation between initial and updated infinites-
imal surfaces, respectively dS and ds

nds = JF−tNdS. (4)

This is one of the main ingredient to pass from one configuration to another,
and thanks to this relation we can obtain

∇x � U =
1

J
∇X � (JF−1U ), (5)

∇xP =
1

J
∇X � (P JF−t). (6)

At this time, it is possible to develop our system equations expressed with
respect to the Lagrangian coordinates, written using the initial configuration
of the flow

d

dt
(ρJ) = 0, (7a)

ρ0 d

dt
(
1

ρ
)−∇X � (JF−1U ) = 0, (7b)

ρ0 d U

dt
+∇X � (P JF−t) = 0, (7c)

ρ0 d E

dt
+∇X � (P JF−1U ) = 0. (7d)

Working with the initial positions of fluid particles, the analysis is done on a
fixed domain, the initial one. However, all the informations concerning the
displacement and the deformation of the domain are contained in the terms
JF−1, JF−t and so in F the deformation gradient tensor. With the use of the
trajectory equation d

dt
Φ(X, t) = d x

dt
= U (X, t), the definition (3) yields

d F

dt
= ∇XU . (8)

The deformation gradient tensor contains all the information related to the
flow map in the gas dynamics system. It helps us to pass from the initial
configuration of the flow to the actual one. An essential identity is the well
known Piola condition, that we can recover by developing the right-hand side
of (5)

∇x � U =
1

J
U �

(
∇X � (JF−t)

)
+ tr(F−1∇XU ).
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where tr is the trace operator.
If U is an arbitrary constant vector, the previous identity yields

∇X � (JF−t) = 0. (9)

This Piola identity is well-known in continuum mechanics. It ensures the
compatibility between the two configurations based on Eulerian and La-
grangian coordinates. This identity rewrites∫

Ω

∇X � (JF−t)dV =

∫
∂Ω

JF−tNdS

=

∫
∂ω

nds thanks to (4)

= 0,

meaning that the integral of the unit outward normal over a closed surface
is equal to zero. This Piola compatibility condition is also essential because
is equivalent to the Galilean invariance of the equations (7b), (7c) and (7d).

The continuity on the edges of the vector JF−tN , which corresponds to to
the normal in the actual configuration of the flow, is needed. Consequently,
a discretization of the tensor F by means of a mapping using finite element
basis has been chosen.

3. Discretization of the deformation

First, we subdivide each polygonal cell into triangles, as in Figure 2. Now,
getting back to the mapping formulation, we develop Φ on the finite element
basis functions λp

Φc
h(X, t) =

∑
p

λp(X) Φp(t),

where the p points are some control points including vertices in a generic
triangle Tc and Φp(t) = Φ(Xp, t) the position at time t of the control point
initially located at Xp. Using this continuous polynomial mapping approxi-
mation and the definition (3) of F, we regain a new expression for this tensor
in the triangle Tc

Fc(X, t) =
∑

p

Φp(t)⊗∇Xλp(X). (10)

6



Ω

Tc

Figure 2: Triangular partitioning of a cell Ω.

Let the tensor G be the cofactor matrix of F, i.e., G = JF−t. The use of (10)
to express Gc yields

Gc =


∑

p

ΦY
p ∂Y λp −

∑
p

ΦY
p ∂Xλp

−
∑

p

ΦX
p ∂Y λp

∑
p

ΦX
p ∂Xλp

 =
∑

p

(
ΦY

p ∂Y λp −ΦY
p ∂Xλp

−ΦX
p ∂Y λp ΦX

p ∂Xλp

)
.

(11)

The compatibility between the initial and current configurations is ensured
by the Piola identity. Taking the divergence of equation (11), one gets

∇X � Gc =
∑

p

(
ΦY

p (∂Y Xλp − ∂XY λp)
ΦX

p (∂XY λp − ∂Y Xλp)

)
= 0.

This equation shows that the Piola compatibility condition is satisfied by
construction. This result can be generalized to three dimension with a similar
procedure. Finally, as in equation (8), the use of the trajectory equation
d
dt
Φp = U p leads to a semi-discrete equation of the deformation gradient

tensor

d

dt
Fc(X, t) =

∑
p

U p(t)⊗∇Xλp(X), (12)

where U p is the velocity of the control point p.
Regarding (8), we make the assumption that the spatial approximation order
of the deformation gradient tensor could be one less than the velocity and
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so than the polynomial approximation coming from the DG discretization.
Consequently, for a second order scheme, F would be piecewise constant
over the triangles. For the numerical application, we use the P1 barycentric
coordinate basis functions which write

λp(X) =
1

2|Tc|
[X(Yp+ − Yp−)− Y (Xp+ −Xp−) + Xp+Yp− −Xp−Yp+ ], (13)

where p, p+ and p− are the counterclockwise ordered triangle nodes, see
Figure 3, and |Tc| the triangle volume.

LpcN pc

Lp+p−N p+p−

p

p−

p+

Tc

Figure 3: Generic triangle.

In this configuration, the semi-discrete equation (12) rewrites

d

dt
Fc(X, t) =

1

|Tc|
∑

p

U p ⊗ LpcN pc, (14)

where LpcN pc is the corner normal at node p, as shown Figure 3, since

∇Xλp(X) =
1

2|Tc|

(
Yp+ − Yp−

Xp− −Xp+

)
,

=
1

2|Tc|
(Lp−pN p−p + Lpp+N pp+),

=
LpcN pc

|Tc|
. (15)

Now, let us discretize the thermodynamical and kinematical equations with
a discontinuous Galerkin approach.
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4. Two-dimensional second order scheme

4.1. Discontinuous Galerkin system discretization

In the previous part, we discretized the deformation gradient tensor using
finite element basis functions. Now, for the thermodynamical unknowns and
the velocity, we present a 2D extension of the one-dimensional discontinuous
Galerkin scheme presented in [15]. The method is also strongly inspired by
the one developed in [9, 12, 11] and could be seen as the continuation of R.
Loubère work in [8]. We develop our cell-centered DG method in the case of
the two-dimensional gas dynamics system in the Lagrangian formalism based
on the initial configuration of the flow.
The DG discretization can be viewed as an extension of the finite volume
method wherein a piecewise polynomial approximation of the unknown is
used. Let us introduce Ω our initial domain filled by a fluid, subdivided into
polygonal cells Ωc. We want to develop on each cells our unknowns onto
Pα(Ωc), the set of polynomials of degree up to α. This space approximation
leads to a (α + 1)th space order accurate scheme. Let φc

h be the restriction
of φh, the polynomial approximation of the function φ, over the cell Ωc

φc
h(X, t) =

K∑
k=0

φc
k(t) σc

k(X), (16)

where the φc
k are the K +1 successive components of φh over the polynomial

basis, and σc
k the polynomial basis functions. Recalling that the dimension

of the polynomial space Pα(Ωc) is (α+1)(α+2)
2

, we have to determine the set

of the (α+1)(α+2)
2

= K + 1 basis functions. We make the choice of the Taylor
basis, which comes from a Taylor expansion on the cell, located at the center
of mass Xc of the cell Ωc defined as following

Xc =
1

mc

∫
Ωc

ρ0(X) X dΩ, (17)

where mc is the constant mass of the cell Ωc.
We set the first basis element to 1, i.e., σc

0 = 1. Going further in space
discretization, the q + 1 basis functions of degree q, with 0 < q ≤ α, write

σc
q(q+1)

2
+j

=
1

j!(q − j)!

(
X −Xc

∆Xc

)q−j (
Y − Yc

∆Yc

)j

, (18)
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where j = 0 . . . q, ∆Xc = Xmax−Xmin

2
and ∆Yc = Ymax−Ymin

2
are the scaling

factors with Xmax, Ymax, Xmin, Ymin the maximum and minimum coordinates
in the cell Ωc. The starting index q(q+1)

2
in (18) corresponds to the number

of polynomial basis functions of degree strictly inferior to q.
Let us introduce 〈φ〉c, the mean value of φ over the cell Ωc averaged by the
initial density

〈φ〉c =
1

mc

∫
Ωc

ρ0(X) φ(X) dΩ. (19)

In our polynomial discretization, we want the mass averaged value to be
preserved. Consequently, we identify the first component of φc

h to 〈φ〉c, i.e.,
φc

0 = 〈φ〉c. This definition leads to a particular constraint on the successive
basis functions writing

φc
0 =

1

mc

∫
Ωc

ρ0 φc
h dΩ,

=
1

mc

K∑
k=0

φk

∫
Ωc

ρ0 σc
k dΩ,

= φc
0 +

K∑
k=1

φk
1

mc

∫
Ωc

ρ0 σc
k dΩ,

= φc
0 +

K∑
k=1

φk 〈σc
k〉c . (20)

In order to respect equation (20), we impose 〈σc
k〉c = 0, ∀k 6= 0. Conse-

quently, we set a new definition of the q + 1 basis functions of degree q, with
0 < q ≤ α

σc
q(q+1)

2
+j

=
1

j!(q − j)!

[(
X −Xc

∆Xc

)q−j (
Y − Yc

∆Yc

)j

−

〈(
X −Xc

∆Xc

)q−j (
Y − Yc

∆Yc

)j
〉

c

]
.

(21)

For the second order scheme, α = 1 and consequently K = (α+1)(α+2)
2

−1 = 2

σc
0 = 1, σc

1 =
X −Xc

∆Xc

, σc
2 =

Y − Yc

∆Yc

, (22)
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because by definition of the center of mass, 〈X −Xc〉c = 0 and 〈Y − Yc〉c = 0.

We point out that the only geometry contributions presents in (21) and (22)
are the center of mass position and the scaling factors. Consequently, regard-
less the shape of the cell is, we could use the same class of basis functions.
We also note that the first moment φ0 associated to the first basis element 1
is the mass averaged value of the function φ over the cell Ωc. If the discretiza-
tion ends here, the scheme would correspond to the finite volumes method
averaged by the initial density. Going further, the successive moments can be
identified as the successive derivatives of the function expressed at the center
of mass of the cell. Here, to simplify the notation, we identify the functions
1

ρ
, U , E and P to their polynomial approximation over the considered cell

Ωc, respectively (
1

ρ
)c
h, U c

h, Ec
h and P c

h.

4.1.1. Volume equation discretization

To discretize the volume equation we perform a local variational formulation
of the equation (7b) over the cell Ωc∫

Ωc

ρ0 d

dt
(
1

ρ
)σc

qdΩ =
K∑

k=0

d

dt
(
1

ρ
)k

∫
Ωc

ρ0σc
qσ

c
kdΩ

= −
∫

Ωc

U � JF−t∇Xσc
qdΩ +

∫
∂Ωc

U � σc
qJF−tNdL

where σc
q is a function picked into the chosen basis {σc

k}k=0...K of PK . Here, we

can identify

∫
Ωc

ρ0σc
qσ

c
kdΩ as a coefficient of the symmetric positive definite

mass matrix. Recalling that

∫
Ωc

ρ0 σc
k dΩ = 0 ∀k 6= 0, the equation corre-

sponding to mass averaged value is independent of the other polynomial basis
components equations.
For the second order scheme the deformation gradient tensor F and so G
are constant over the triangles T c

i and ∇Xσc
q over Ωc. Here, we make the

assumption that the velocity on the faces surrounding a node is equal to the
node velocity, i.e., U |∂Ωc∩∂Ωpc = U p where the Ωpc are subcells of Ωc, refer to
Figure 4-(a).
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(a) Subcell Ωpc.
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−
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(b) Definition of Ω±pc.

Figure 4: Partition of the cell Ωc.

∫
Ωc

ρ0 d

dt
(
1

ρ
)σc

qdΩ = −
ntri∑
i=1

Gc
i∇Xσc

q �
∫
T c

i

UdT +
∑

p∈P(Ωc)

U p �
∫

∂Ωc∩∂Ωpc

σc
qGNdL︸ ︷︷ ︸

lqpcn
q
pc

where lqpcn
q
pc denotes the qth moment of the Eulerian corner normal.

Finally, the equation on the specific volume leads to∫
Ωc

ρ0 d

dt
(
1

ρ
)σc

qdΩ = −
ntri∑
i=1

Gc
i∇Xσc

q �
∫
T c

i

UdT +
∑

p∈P(Ωc)

U p � lqpcn
q
pc (23)

For the first moment, with lpcnpc = l0pcn
0
pc, we exactly recover the EUC-

CLHYD scheme presented in [9, 12, 11]

mc
d

dt
(
1

ρ
)c
0 =

∑
p∈P(Ωc)

U p � lpcnpc. (24)

The scheme satisfies the GCL in the sense that the volume |ωc(t)| of a mov-
ing cell ωc at a time t calculated from the updated position of its nodes
xp is perfectly equivalent to the volume deriving from the volume equation

discretization (24), since
d |ωc|

dt
=

∫
Ωc

ρ0 d

dt
(
1

ρ
)dΩ = mc

d

dt
(
1

ρ
)c
0.
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Recalling that the volume of a generic polygonal cell writes

|ωc| =
1

2

∑
p∈P(Ωc)

(xp × xp+) � ez, (25)

we derive a new volume equation

d |ωc|
dt

=
1

2

∑
p∈P(Ωc)

(
d xp

dt
× xp+) � ez +

1

2

∑
p∈P(Ωc)

(xp ×
d xp+

dt
) � ez,

=
1

2

∑
p∈P(Ωc)

(U p × xp+) � ez +
1

2

∑
p∈P(Ωc)

(xp ×U p+) � ez,

=
1

2

∑
p∈P(Ωc)

U p � (xp+ × ez)−
1

2

∑
p∈P(Ωc)

U p+ � (xp × ez),

=
1

2

∑
p∈P(Ωc)

U p � (xp+ × ez)−
1

2

∑
p∈P(Ωc)

U p � (xp− × ez),

=
∑

p∈P(Ωc)

U p �

[(
xp+ − xp−

2

)
× ez

]
,

=
∑

p∈P(Ωc)

U p � lpcnpc. (26)

The equations (26) and (24) are perfectly equivalent, consequently, the two
volumes will be identical. Hence, The Geometric Conservation Law is satis-
fied.

4.1.2. Momentum discretization

For the momentum equation, the procedure is similar as the one presented
for the volume equation. Local variational formulation of (7c) on Ωc leads to∫

Ωc

ρ0 d U

dt
σc

qdΩ =
ntri∑
i=1

Gc
i∇Xσc

q

∫
T c

i

PdT −
∑

p∈P(Ωc)

F q
pc (27)

where F q
pc =

∫
∂Ωc∩∂Ωpc

P σc
qGNdL denotes the qth moment of the subcell forces.

For the first moment, with F pc = F 0
pc, we again recover the EUCCLHYD

scheme

mc
d U c

0

dt
= −

∑
p∈P(Ωc)

F pc. (28)
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4.1.3. Total energy discretization

Applying a local variational formulation of (7d) on Ωc, one gets∫
Ωc

ρ0 d E

dt
σc

qdΩ =
ntri∑
i=1

Gc
i∇Xσc

q �
∫
T c

i

P UdT −
∑

p∈P(Ωc)

∫
∂Ωc∩∂Ωpc

P U � σc
qGNdL

(29)

At this point, we make the following fundamental assumption

P U = P U . (30)

With the use of the same approximation on the velocity of the faces sur-
rounding a node, the equation on the moments of the total energy finally
writes∫

Ωc

ρ0 d E

dt
σc

qdΩ =
ntri∑
i=1

Gc
i∇Xσc

q �
∫
T c

i

P UdT −
∑

p∈P(Ωc)

U p � F q
pc (31)

For the first moment, we can identify the EUCCLHYD scheme

mc
d Ec

0

dt
= −

∑
p∈P(Ωc)

U p � F pc. (32)

At the end, we have 3× (K +1) equations for the same number of unknowns.
For q = 0 . . . K

K∑
k=0

d

dt
(
1

ρ
)k

∫
Ωc

ρ0σc
qσ

c
kdΩ = −

ntri∑
i=1

Gc
i∇Xσc

q �
∫
T c

i

UdT +
∑

p∈P(Ωc)

U p � lqpcn
q
pc,

K∑
k=0

d U k

dt

∫
Ωc

ρ0σc
qσ

c
kdΩ =

ntri∑
i=1

Gc
i∇Xσc

q

∫
T c

i

PdT −
∑

p∈P(Ωc)

F q
pc,

K∑
k=0

d Ek

dt

∫
Ωc

ρ0σc
qσ

c
kdΩ =

ntri∑
i=1

Gc
i∇Xσc

q �
∫
T c

i

P UdT −
∑

p∈P(Ωc)

U p � F q
pc.

To close the construction, we need to define our nodal solvers U p and F q
pc.

And as we did in the one-dimensional study presented in [15], we make an
entropy analysis to ensure that the kinetic energy is correctly dissipated in
internal energy through a shock.
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4.2. Entropic analysis

As in the previous parts, we identify the functions
1

ρ
, U , E and P to their

polynomial approximation over the considered cell Ωc, respectively (
1

ρ
)c
h, U c

h,

Ec
h and P c

h. The method is quite similar than the one used in 1D, we perform
variational formulations on the gas dynamics equations (7b),(7c) and (7d)
with respectively P , U and 1 as test functions∫

Ωc

ρ0 P
d

dt
(
1

ρ
)dΩ =

∫
∂Ωc

P U � JF−tNdL−
∫

Ωc

U � JF−t∇XPdΩ, (33a)∫
Ωc

ρ0 U �
dU

dt
dΩ = −

∫
∂Ωc

P U � JF−tNdL +

∫
Ωc

P tr(JF−1∇XU )dΩ, (33b)∫
Ωc

ρ0dE

dt
dΩ = −

∫
∂Ωc

P U � JF−tNdL. (33c)

We identify these equations respectively to the pressure work, the kinetic
energy and the total energy semi-discrete equations. Knowing that specific
internal energy writes as ε = E − 1

2
U 2, and specific entropy is expressed

according to the Gibbs formula as TdS = dε + P d(1
ρ
), where T denotes the

temperature, the (33c)-(33b)+(33a) combination leads to∫
Ωc

ρ0 T
dS

dt
dΩ =

∫
∂Ωc

[P U + P U − P U ] � JF−tNdL

−
∫

Ωc

[P tr(JF−1∇XU ) + U � JF−t∇XP ]︸ ︷︷ ︸
A

dΩ.

The use of the Piola compatibility condition gives us

∇X � (JF−1P U ) = U � JF−t∇XP + P ∇X � (JF−1U ),

= U � JF−t∇XP + P U � (∇X � (JF−t)︸ ︷︷ ︸
=0 Piola

) + P tr(JF−1∇XU ),

= A.

We finally get an expression of the entropy variation, recalling that G = JF−t∫
Ωc

ρ0 T
dS

dt
dΩ =

∫
∂Ωc

[P U + P U − P U − P U ] � GNdL, (34)
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where T denotes the temperature and S the specific entropy.
To ensure this quantity to be positive, according to the second law of ther-
modynamics, we set the following sufficient condition

P f (Xf ) = Pc(Xf )− Zc (U f (Xf )−U c(Xf )) �
GN

‖GN‖
, (35)

where P f and U f are the numerical fluxes on the face f expressed at Xf ,
a point on it, and Pc(Xf ) and U c(Xf ) are the extrapolated pressure and
velocity in the cell Ωc located at this point. Zc is a positive constant with a
physical dimension of a density times a velocity.
The use of this expression to calculate F q

pc leads to

F q
pc =

∫
∂Ωc∩Ωpc

P σc
qGNdL

=

∫
∂Ωc∩Ωpc

Pc σc
qGNdL−

∫
∂Ωc∩Ωpc

Zc (U −U c) �
GN

‖GN‖
σc

qGNdL

' Pc(p)

∫
∂Ωc∩Ωpc

σc
qGNdL−

∫
∂Ωc∩Ωpc

Zc (U p −U c(p)) �
GN

‖GN‖
σc

qGNdL

= Pc(p) lqpcn
q
pc −Mq

pc (U p −U c(p)), (36)

where the Mq
pc matrices are define as following

Mq
pc = Zc

∫
∂Ωc∩∂Ωpc

GN

‖GN‖
⊗ GN σc

qdL,

= Zc

(
lq,+
pc n+

pc ⊗ n+
pc + lq,−

pc n−
pc ⊗ n−

pc

)
,

where lq,±
pc =

∫
∂Ωc∩∂Ω±pc

σc
qdL, refer to Figure 4-(b).

Total energy conservation imposes, in the simple case with no boundary
contribution ∑

c

mc
d Ec

0

dt
= −

∑
c

∑
p∈P(Ωc)

U p � F pc

=
∑

p∈P(Ω)

U p �
∑

c∈C(p)

F pc

= 0,
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where C(p) is the set of cells surrounding the p node. Since this result holds
for any velocity field, total energy conservation writes∑

c∈C(p)

F pc = 0. (37)

Thanks to this constraint, we finally have an explicit expression of the nodal
velocity U p

(
∑

c∈C(p)

Mpc) U p =
∑

c∈C(p)

[Pc(p) lpcnpc + Mpc U c(p)] (38)

where M0
pc = Mpc = Zc (l+pcn

+
pc ⊗ n+

pc + l−pcn
−
pc ⊗ n−

pc) are semi-definite posi-
tive matrices with a physical dimension of a density times a velocity. If we
take into account the boundary contribution, we would get another equation
defining the nodal solver for the boundary nodes.
At the end, we get a second-order semi-discrete scheme respecting by con-
struction the Piola compatibility condition and assuring the GCL, the mo-
mentum conservation and the total energy conservation. Finally, we apply
to all these semi-discretized equations a classical second-order TVD Runge-
Kutta time discretization scheme [14].

Most of the test cases presented in this article contain discontinuities. In this
case, a very well-known phenomenon is the apparition of oscillations when
we are working with high order schemes. To avoid this problem and so to
remain monotonous, we apply slope limiters.

4.3. Characteristic variables limitation

We use an extension of the Riemann invariants limitation presented in [15]
setting

dJ0 = dE −U � dU + P d(
1

ρ
), (39)

dJ1
± = dU � ν1 ∓ ρ C d(

1

ρ
), (40)

dJ2
± = dU � ν2 ∓ ρ C d(

1

ρ
), (41)

the differentials of the Riemann invariants extended to the two-dimensional
case where C is the sound speed and ν1 and ν2 are two direction vectors
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to define. And following the same procedure than in [15], linearizing these
quantities on each cells around the mean values in the cells yields

J0,c = Ec
h −U c

0 � U c
h + P c

0 (
1

ρ
)c
h, (42)

J1,c
± = U c

h � ν1 ∓ ρc
0 Cc

0 (
1

ρ
)c
h, (43)

J2,c
± = U c

h � ν2 ∓ ρc
0 Cc

0 (
1

ρ
)c
h, (44)

where φi
h is the polynomial approximation of φ on the cell Ωc and φc

0 its
mean value. This procedure is equivalent to linearize the equations, on each
cells, around a mean state. Applying the high-order limitation procedure
presented in [7], we obtain the limiting coefficients for the Riemann invariants
polynomials. Consequently, using definitions (42), (43) and (44), we recover
the limiting coefficients corresponding to the system variables polynomial
approximations. And concerning ν1 and ν2, we decided to use the velocity
mean value over the cell and its orthogonal direction, i.e., ν1 = U c

0 and
ν2 = (U c

0)
⊥, where a⊥ = (−ay, ax)

t with a = (ax, ay)
t. With this procedure,

we preserve the cylindrical symmetry and avoid the apparition of most of the
oscillations, refer Figure 5-(b).

5. Numerical results

To demonstrate the accuracy and the robustness of our scheme on the gas
dynamics system, we have run test cases taken from the literature. Dur-
ing the whole calculation we are working on the fixed initial grid. However,
plotting final solutions on the initial mesh, the results are difficult to ana-
lyze. Nevertheless, knowing the deformation gradient tensor everywhere and
at anytime, we are able to observe the solution on the actual, deformed,
mesh. For a better understanding of the results, all the problem solutions
are displayed on the final mesh.

5.1. Polar Sod shock tube problem

Here, we consider the extension of the classical Sod shock tube [13] to the
case of polar geometry. The present problem consists of a cylindrical shock
tube of unity radius. The interface is located at r = 0.5. At the initial time,
the states on the left and on the right sides of the interface are constant. The
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left state is a high pressure fluid characterized by (ρ0
L, P 0

L, U 0
L) = (1, 1,0), the

right state is a low pressure fluid defined by (ρ0
R, P 0

R, U 0
R) = (0.125, 0.1,0).

The gamma gas law is defined by γ = 7
5
. The computational domain is

defined in polar coordinates by (r, θ) ∈ [0, 1]×[0, π
4
]. The boundary conditions

are symmetric for θ = 0 and θ = π
4
, and wall, i.e., the normal velocity is set to

zero, at r = 1. The aim of this test case is to assess the scheme accuracy and
the scheme symmetry preservation ability, refer Figure 5-(a). On Figure 5-
(b), we note the strong accuracy difference between the first and the second
order, and that we remain monotonous.
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(a) Second order scheme with limitation.
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Figure 5: Sod shock tube problem on a polar grid made of 100× 5 cells: density map.

5.2. Noh problem

The Noh problem [10] is a famous test case used to validate Lagrangian
scheme in the regime of infinite strength shock wave. In this test case, a cold
gas with unit density is given an initial inward radial velocity of magnitude 1.
The initial pressure is given by P 0 = 10−6 and the polytropic index is equal
to 5

3
. A diverging cylindrical shock wave is generated which propagates at

speed D =
1

3
. The density plateau behind the shock wave reaches the value

16. The initial computational domain is defined by (x, y) = [0, 1] × [0, 1].
The boundary conditions on the x and y axis are wall boundary conditions
whereas a pressure given by P ? = P 0 is prescribed at the outer axis x = 1.2
and y = 1.2. We run the Noh problem on a 50 × 50 Cartesian grid. This
configuration leads to a severe test case since the mesh is not aligned with the
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flow. We note we have a very smooth and cylindrical solution, and that the
shock is located at a circle whose radius is approximately 0.2, refer Figure 6.
On Figure 7, we observe the second order profile is very sharp at the shock
wave front and very similar to the one-dimensional cylindrical solution.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

 

 

2

4

6

8

10

12

14

16

(a) Global view.
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(b) Zoom on the [0, 0.25]× [0, 0.25] zone.

Figure 6: Second order DG scheme with limitation for a Noh problem on a 50×50 Cartesian
grid: density map.

5.3. Sedov point blast problem

We consider the Sedov problem for a point-blast in a uniform medium. An
exact solution based on self-similarity arguments is available, see for instance
[5]. The initial conditions are characterized by (ρ0, P 0, U 0) = (1, 10−6,0),
and the polytropic index is equal to 7

5
. We set an initial delta-function

energy source at the origin prescribing the pressure in the cell containing

the origin as follows, Por = (γ − 1)ρor
ε0

vor

, where vor denotes the volume of

the cell containing the origin and ε0 is the total amount of release energy.
By choosing ε0 = 0.244816, as suggested in [5], the solution consists of a
diverging infinite strength shock wave whose front is located at radius r = 1
at t = 1, with a peak density reaching 6. First, we run Sedov problem
with the second order DG scheme with limitation described in this paper
with a 30× 30 Cartesian grid on the domain (x, y) = [0, 1.2]× [0, 1.2], refer
to Figure 8-(a). Then, keeping the same conditions, we make use of an
unstructured grid of 775 polygonal cells, produced by Voronoi tessellation as
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Figure 7: Density profiles comparison for a Noh problem on a 50× 50 Cartesian grid.

depicts Figure 8-(b). In both cases, the shock wave front is correctly located
at the end of the computation and is perfectly cylindrical, and the density
peak almost reaches 6. These results demonstrate the robustness and the
accuracy of this scheme.
To assess the accuracy of our DG scheme we compute the convergence order
for the smooth solution of the Taylor-Green vortex test case, as in [17].

5.4. Taylor-Green vortex problem

This problem is derived by considering an analytical solution of the incom-
pressible Navier-Stokes equations, modify to the case of compressible Euler
equations. The Taylor-Green vortex is characterized by the following condi-
tions. The computational domain is defined by (x, y) = [0, 1] × [0, 1]. The
initial density is uniform and denoted by ρ0. The initial velocity field is
divergence-free and reads

U 0 = U0

(
sin(πx) cos(πy)
− cos(πx) sin(πy)

)
.

Let us point that with these two fields, the volume equation (2a) is automat-
ically satisfied. Now, satisfying the momentum equation (2b), P 0 is obtained
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(b) On a polygonal grid made of 775 cells.

Figure 8: Second order DG scheme with limitation for a point blast Sedov problem: density
map.

by balancing the inertia term as

∇xP
0 = −ρ0 d U 0

dt
. (45)

After some computations, we finally obtain

P 0 =
1

4
ρ0(U0)2[cos(2πx) + cos(2πy)] + C0,

where C0 is a constant that allows to define a non-negative pressure. Using
these definitions of the density, velocity and pressure, the volume equation
and the momentum equation are automatically satisfied. However, since we
are computing this solution by solving the compressible Euler equations, it
remains to check whether or not the energy equation (2c) is satisfied. Let us
investigate first the following internal energy equation

ρ
d ε

dt
+ P∇x � U = 0, (46)

where ε is the specific internal energy. Recalling that ∇x � U 0 = 0 and
ε0 = P 0

(γ−1)ρ0 , equation (46) writes initially

ρ0 d ε0

dt
+ P 0∇x � U 0 =

1

γ − 1
U 0 �∇xP

0.
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Replacing U 0 and P 0 by their analytical expressions, we finally obtain

ρ0 d ε0

dt
+ P 0∇x � U 0 =

π

4

ρ0(U0)3

γ − 1
[cos(3πx) cos(πy)− cos(3πy) cos(πx)].

(47)

The following combination of the previous equations, (47)− U 0 � (45), leads
to the total energy equation

ρ0 d E0

dt
+∇x � (P 0U 0) =

π

4

ρ0(U0)3

γ − 1
[cos(3πx) cos(πy)− cos(3πy) cos(πx)].

(48)

Finally, the numerical simulation of this test case solving the Lagrangian
hydrodynamics equations requires the addition of a supplementary source
term in the energy (total or internal) equation.
For the numerical applications, we set ρ0 = 1, C0 = 1, U0 = 1 and γ = 7

5
.

The results displayed in Figure 9 have been obtained by our first and second
order schemes on a 20× 20 Cartesian grid.
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Figure 9: Taylor-Green vortex problem on a 20× 20 Cartesian grid: pressure map.

Knowing the analytical solution, we can compute the numerical errors and
the rate of convergence of the second order DG scheme with and without
slope limiters, refer to Table 1 and Table 2.
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L1 L2 L∞

h Eh
L1

qh
L1

Eh
L2

qh
L2

Eh
L∞ qh

L∞
1
10

2.50E-2 1.48 3.71E-2 1.30 1.72E-1 1.35
1
20

8.98E-3 1.88 1.51E-2 1.75 6.73E-2 1.27
1
40

2.44E-3 1.94 4.48E-3 1.95 2.79E-2 1.68
1
80

6.36E-4 2.00 1.16E-3 2.00 8.68E-3 1.95
1

160
1.59E-4 2.01 2.90E-4 2.01 2.24E-3 2.01

1
320

3.94E-5 - 7.18E-5 - 5.54E-4 -

Table 1: rate of convergence computed on the pressure for second order DG scheme without
limitation.

L1 L2 L∞

h Eh
L1

qh
L1

Eh
L2

qh
L2

Eh
L∞ qh

L∞
1
10

5.80E-2 1.54 7.22E-2 1.31 2.24E-1 1.44
1
20

1.99E-2 2.33 2.92E-2 2.03 8.27E-2 1.34
1
40

3.96E-3 2.25 7.16E-3 2.20 3.26E-2 1.61
1
80

8.31E-4 2.17 1.56E-3 2.15 1.07E-2 1.52
1

160
1.85E-4 2.11 3.52E-4 2.14 3.73E-3 2.41

1
320

4.28E-5 - 8.01E-5 - 7.01E-4 -

Table 2: rate of convergence computed on the pressure for second order DG scheme with
limitation.

We also compare these numerical errors with those obtained with another
second order scheme presented in [9]. As expected, the DG scheme presented
in this article is more accurate than the MUSCL scheme as show Table 3.
Another smooth problem permitting to assess the numerical accuracy of the
scheme is the Kidder isentropic compression test case.

5.5. Kidder isentropic compression

In [6], Kidder has constructed an analytical solution of the self-similar isen-
tropic compression of a shell filled with perfect gas. Following [1, 11], we
recall the main features of this solution in order to define the set up of the
test case. Initially, the shell has the internal (resp. external) radius Ri (resp.
Re). Let Pi, Pe, ρi and ρe be the pressures and densities located at Ri and
Re. Since the compression is isentropic, we define s = Pe

ργ
e
, and we have
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L1 L2 L∞

h Eh
L1

qh
L1

Eh
L2

qh
L2

Eh
L∞ qh

L∞
1
10

3.58E-2 1.44 5.08E-2 1.37 1.67E-1 1.17
1
20

1.32E-2 1.78 1.96E-2 1.56 7.41E-2 1.03
1
40

3.84E-3 1.93 6.66E-3 1.89 3.63E-2 1.58
1
80

1.01E-3 1.99 1.80E-3 1.98 1.21E-2 1.87
1

160
2.55E-4 2.00 4.57E-4 2.00 3.31E-3 1.97

1
320

6.38E-5 - 1.14E-4 - 8.47E-4 -

Table 3: rate of convergence computed on the pressure for second order MUSCL scheme
without limitation.

ρi = ρe

(
Pi

Pe

) 1
γ
. Let r(R, t) be the radius at time t > 0 of a fluid particle

initially located at radius R. Looking for a solution of the gas dynamics
equation under the form r(R, t) = h(t)R,using the isentropic feature of the
flow and setting γ = 1 + 2

ν
, where ν = 1, 2, 3 indicates planar, cylindrical

or spherical symmetry, we finally get the self-similar analytical solution for
t ∈ [0, τ [

ρ(r(R, t), t) = ρ0(R) h(t)−
2

γ−1 ,

U(r(R, t), t) = R
d h(t)

dt
,

P (r(R, t), t) = P 0(R) h(t)−
2γ

γ−1 .

Here, τ denotes the focusing time of the shell which is written

τ =

√
γ − 1

2

R2
e −R2

i

a2
e − a2

i

,

where a2 = sγργ−1 is the square of the isentropic sound speed. The particular
form of the polytropic index enables us to get the analytical expression h(t) =√

1−
(

t

τ

)2

, which is valid for any t ∈ [0, τ [. Note that h(t) goes to zero

when t goes to τ , hence τ corresponds to the collapse of the shell on itself.
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for R ∈ [Ri, Re], the initial density and pressure, ρ0 and P 0, are defined by

ρ0(R) =

(
R2

e −R2

R2
e −R2

i

ργ−1
i +

R2 −R2
i

R2
e −R2

i

ργ−1
e

) 1
γ−1

,

P 0(R) = s (ρ0(R))γ.

Note that the initial velocity is equal to zero since the shell is assumed to
be initially at rest. The isentropic compression is obtained imposing the
following pressure laws at the internal and external faces of the shell:

P (r(Ri, t), t) = Pi h(t)−
2γ

γ−1 ,

P (r(Re, t), t) = Pe h(t)−
2γ

γ−1 .

We point out that the velocity field is a linear function of the radius r which
is a typical property of self-similar isentropic compression.
For numerical applications, we consider the cylindrical shell characterized by
Ri = 0.9 and Re = 1. We set Pi = 0.1, Pe = 10 and ρe = 10−2. Due to the
cylindrical symmetry we have ν = 2, hence γ = 2. The previous values lead
to ρi = 10−3, s = 105 and τ ' 7.265E−3. The initial computational domain
is defined in polar coordinates by (r, θ) ∈ [0.9, 1]× [0, π

2
].

This analytical solution is useful in order to assess the scheme accuracy and
the ability of a Lagrangian scheme to properly compute a spherical isen-
tropic compression. The result displayed in Figure 10 show the symmetry is
perfectly preserved, and those in Table 4 that the correct order is reached.

L1 L2 L∞

Nr ×Nθ Eh
L1

qh
L1

Eh
L2

qh
L2

Eh
L∞ qh

L∞

10× 9 3.92E-2 1.82 1.55E-1 1.89 1.22E0 1.97
20× 18 1.11E-2 1.95 4.18E-2 1.97 3.12E-1 1.98
40× 36 2.88E-3 1.98 1.07E-2 1.99 7.92E-2 1.99
80× 72 7.28E-4 1.99 2.69E-3 2.00 2.00E-2 1.99

160× 144 1.83E-4 2.00 6.74E-4 2.00 5.03E-3 1.99
320× 288 4.58E-5 - 1.69E-4 - 1.27E-3 -

Table 4: rate of convergence computed on the pressure for second order MUSCL scheme
without limitation, at time t =

τ

2
.
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Figure 10: Second order DG scheme for a Kidder isentropic compression problem on a
polar grid made of 20× 18 cells: pressure map.

6. Conclusion

We have presented a cell-centered DG discretization using Taylor basis for
solving two-dimensional gas dynamics equations on general unstructured
grids, using the Lagrangian coordinates related to the initial configuration of
the flow. In this frame, the mesh displacement and deformation are followed
by the deformation gradient tensor we chose to discretize on triangles with
the use of finite element basis functions. The GCL and the Piola compati-
bility condition are satisfied by construction of the scheme. With an analog
approach to in [9], we build our nodal solvers imposing a correct entropy
production and total energy conservation. Having developed properly and in
a continuous manner the geometry, we can observe and display the solutions
on the actual mesh. A robust and accurate limitation procedure has been
constructed. The strong scheme robustness and accuracy have been assessed
using several relevant test cases. In future, we plan to investigate the exten-
sion of the present DG discretization to curvilinear meshes by describing the
deformation gradient tensor more precisely, and then up to the third order
for the whole gas dynamics system. An extension to ALE is also scheduled.
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