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Central Compact Schemes Inverse Lax-Wendroff

NASA project
Wei Wang (Florida Univ.) and Mark H. Carpenter (NASA Techn. Monitor)
Design efficient and highly accurate solvers both for direct numerical
simulations and simulations of compressible flows with turbulence models

Requirements
Good wave resolution
High order of accuracy
Low dissipation error

Compact schemes
Handle non-periodic boundary conditions a lot more easily than spectral
methods could
Much smaller numerical dispersion and dissipation errors than finite
difference schemes of the same order of accuracy on the same mesh
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Central Compact Schemes Inverse Lax-Wendroff

Possible issues at the boundaries
Several ghost points near the boundary due to the wide numerical stencil
Grids points not located on the physical boundary
Ghost and grid points not symmetrically located with respect to the wall

Outflow boundary condition: Lagrangian extrapolation
Ensure stability at the outflow
Maintain the order of accuracy

Inflow boundary condition: Inverse Lax-Wendroff
Taylor expansion of the expected order at the boundary
Use repeatedly the partial equation (PDE) to convert the successive
normal derivatives into time derivatives of the boundary condition
Maintain the order of accuracy

S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical
boundary conditions of conservation laws. JCP, 2010.
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Conservation laws
We consider the solution of the conservation law

∂ u
∂t

+
∂ f (u)

∂x
= 0

A semidiscrete finite difference can be represented as(
∂ u
∂t

)
i

= −f (u)x
i ,

where f (u)x
i is the approximation of ∂ f (u)

∂x at the grid node xi

Lele’s compact schemes (JCP 1992)
Cell-centered compact scheme (CCCS)

βf x
i−2 + αf x

i−1 + f x
i + αf x

i+1 + βf x
i+2 = a

fi+ 1
2
− fi− 1

2

∆x
+ b

fi+ 3
2
− fi− 3

2

3∆x
+ c

fi+ 5
2
− fi− 5

2

5∆x

Cell-node compact scheme (CNCS)

βf x
i−2 + αf x

i−1 + f x
i + αf x

i+1 + βf x
i+2 = a

fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
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Lele’s cell-centered compact scheme
The resolution of the CCCS is much better than the CNCC
Stencil contains both the grid points and half grid points
Only the values at the cell-centers are used to calculate the derivatives at
the cell-nodes

Half grid points
Interpolation from the values at the grid points by a compact formula

β f̂i− 5
2

+ α f̂i− 3
2

+ f̂i+ 1
2

+ α f̂i+ 3
2

+ β f̂i+ 5
2

= a
fi+1 + fi

2
+ b

fi+2 + fi−1

2
+ c

fi+3 + fi−2

2

Introduce transfer errors
Significantly reduces the resolution for high wave numbers

S.K. LELE, Compact finite difference schemes with spectral-like
resolution. JCP, 1992.
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Main idea
If both cell-node and cell-center values are used to compute the
derivatives, one could get higher order of accuracy and better resolution

New class of central compact schemes
Central Compact Schemes (CCS)

βf x
i−2 + αf x

i−1 + f x
i + αf x

i+1 + βf x
i+2

=

a
fi+ 1

2
− fi− 1

2

∆x
+ b

fi+1 − fi−1

2∆x
+ c

fi+ 3
2
− fi− 3

2

3∆x
+ d

fi+2 − fi−2

4∆x
+ e

fi+ 5
2
− fi− 5

2

5∆x

Both CCCS and CNCS of Lele are special cases of these CCS

X. LIU, S. ZHANG, H. ZHANG AND C.-W. SHU, A new class of central
compact schemes with spectral-like resolution I: Linear schemes.
JCP, 2013.
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Half grid points
Stored as independent computational variables
Computed using the same scheme, shifting the indices by 1

2

βf x
i− 3

2
+ αf x

i− 1
2

+ f x
i+ 1

2
+ αf x

i+ 3
2

+ βf x
i+ 5

2

=

a
fi+1 − fi

∆x
+ b

fi+ 3
2
− fi− 1

2

4∆x
+ c

fi+2 − fi−1

3∆x
+ d

fi+ 5
2
− fi− 3

2

4∆x
+ e

fi+3 − fi−2

5∆x

Outcome
Gain in accuracy and resolution
Double memory requirement in 1D
But same cost as compact interpolation

Reformulation on a twice more refined mesh
CCS rewrite as cell-node compact schemes as

βf x
i−4 + αf x

i−2 + f x
i + αf x

i+2 + βf x
i+4

=

a
fi+1 − fi−1

2∆x
+ b

fi+2 − fi−2

4∆x
+ c

fi+3 − fi−3

6∆x
+ d

fi+4 − fi−4

8∆x
+ e

fi+5 − fi−5

10∆x
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Time discretization
Third-order TVD Runge-Kutta

Two dimensional Euler equations
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(a) Final time t = 50
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(b) Final time t = 200

Figure : The distribution of the density along x = 5 for the two dimensional advection
of an isentropic vortex on a 80× 80 Cartesian grid, with CCS-T8.
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Outflow boundary condition Inflow boundary condition

Initial Boundary Value Problem (IBVP)
We consider the following initial boundary value problem

∂ u
∂t

+
∂ f (u)

∂x
= 0, x ∈ [xA, xB], t ≥ 0,

u(xA, t) = g(t), t ≥ 0,

u(x ,0) = u0(x), x ∈ [xA, xB]

We assume f ′(u(xA, t)) > 0 and f ′(u(xB, t)) > 0, where f ′(u) = df (u)
du

Cartesian grid
Uniform mesh {xj}j=0,...,n such as

x0 − CA∆x = xA ≤ x0 < x1 < · · · < xn ≤ xB = xn + CB∆x

where CA ∈ [0,1] and CB ∈ [0,1]

The grid points x0 and xn are not necessarily located on the boundaries
xA and xB
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Outflow boundary condition Inflow boundary condition

Outflow: fn+p

fn+p have to be defined, for p = 1, . . . ,5
sth order extrapolation procedure is used

fn+p = f (un+p), un+p =
s∑

j=1

un−s+j

s∏
l=1
l 6=j

(
p + s − l

j − l

)

M. GOLDBERG, On a boundary extrapolation theorem by Kreiss. 1977.

Outflow: f x
n+p

f x
n+p have to be defined, for p = 1, . . . ,4

Extension of the extrapolation procedure to the derivative

f x
n+p = f ′(un+p)

∂ u
∂x
|n+p,

∂ u
∂x
|n+p =

1
∆x

s∑
j=1

un−s+j

s∏
l=1
l 6=j

(
p + s − l

j − l

) s∑
q=1
q 6=j

(
1

p + s − q

)
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Outflow boundary condition Inflow boundary condition

Inflow: f−p

f−p have to be defined, for p = 1, . . . ,5
Inverse Lax-Wendroff (ILW) procedure is used

Taylor expansion at the boundary xA

f−p = f (u−p), u−p =
s−1∑
k=0

(x−p − xA)k

k !
u∗ (k),

where u∗ (k) are the (s − k)th order approximation of ∂k u
∂xk |xA

Repetitive use of the PDE to convert spatial derivatives to time derivatives

u∗ (0) = u(xA, t) = g(t),

u∗ (1) =
∂ u
∂x
|xA = − g′(t)

f ′(g(t))
,

u∗ (2) =
∂2u
∂x2 |xA =

f ′(g(t))g′′(t)− 2f ′′(g(t))g′(t)2

f ′(g(t))3 .

S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical
boundary conditions of conservation laws. JCP, 2010.
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Outflow boundary condition Inflow boundary condition

Inflow: f x
−p

f x
−p have to be defined, for p = 1, . . . ,4

Extension of the ILW procedure to the derivative

f x
−p = f ′(u−p)

∂ u
∂x
|−p,

∂ u
∂x
|−p =

s−2∑
k=0

(x−p − xA)k

k !
u∗ (k+1)

where the u∗ (k) have already been computed in the evaluation of u−p

Outcome
Very heavy algebra for very high order of approximation, or for fully
nonlinear systems of equations
Simplified version of the ILW procedure with only to two leading terms

S. TAN, C. WANG, C.-W. SHU AND J. NING, Efficient implementation of
high order inverse Lax-Wendroff boundary treatment for conservation
laws. JCP, 2012.
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Outflow boundary condition Inflow boundary condition

Extension of the Simplified Inverse Lax-Wendroff (SILW)
The first ks moments are computed by the ILW procedure, and the
following ones through the use of an extrapolation

u−p =

ks−1∑
k=0

(−p + CA)k

k !
∆xk u∗ (k)

ILW +
s−1∑
k=ks

(−p + CA)k

k !
∆xk u∗ (k)

EXT ,

where the successive moments u∗ (k)
EXT write

u∗ (k)
EXT =

s∑
j=1

uj−1

∆xk

s∏
l=1
l 6=j

(
1− CA − l

j − l

) s∑
q1=1
q1 6=j

(
1

1− CA − q1

)
. . .

s∑
qk =1
qk 6=j

qk 6=q1,...,qk−1

(
1

1− CA − qk

)

Same procedure on the derivative

∂ u
∂x
|−p =

ks−2∑
k=0

(−p + CA)k

k !
∆xk u∗ (k+1)

ILW +
s−2∑

k=ks−1

(−p + CA)k

k !
∆xk u∗ (k+1)

EXT
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Semidiscrete Fully discrete

Theorem 1
G-K-S theory asserts that to show stability for the finite-domain problem, it is
sufficient to show that the inner scheme is Cauchy stable on (−∞,+∞),
and that each of the two quarter-plane problems is stable with the use of
normal mode analysis. Thus, the stability of the finite-domain problem is
broken into the summation of three simpler problems

Theorem 2
For each quarter-plane problem that arise from Theorem 1, a necessary and
sufficient condition for stability of the IBVP is that no eigensolution exists.
This theorem is true for either the fully discrete case or the semidiscrete case.

References

B. GUSTAFSSON, H.-O. KREISS AND A. SUNDSTRÖM, Stability theory of
difference approximations for mixed initial boundary value problem. II.
Math. of Comp., 1972.

J.C. STRIKWERDA, Initial boundary value problems for the method of
lines. JCP, 1980.
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Semidiscrete Fully discrete

Quarter-plane problem
We consider the following quarter-plane problem

∂ u
∂t

+ A
∂ u
∂x

= 0, x ≥ 0, t ≥ 0,

u(0, t) = g(t), t ≥ 0, if A > 0,

u(x ,0) = u0(x), x ≥ 0,

‖u(., t)‖ <∞,

where ‖u(., t)‖ =
∫∞

0 |u(x , t)|2dx

Uniform grid 0 ≤ x0 = C0 ∆x < x1 < . . . , C0 ∈ [0,1[

The use of compact scheme yields the semidiscrete inner scheme

P
d uj

dt
= − A

∆x
Quj , for j = r , r + 1, . . .

where P =

pL∑
i=−rL

αi E i , Q =

pR∑
i=−rR

ai E i , E iuj = uj+i and r = max(rL, rR)
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Semidiscrete Fully discrete

Quarter-plane problem
Quarter-plane problem discretization

P
d uj

dt
= − A

∆x
Quj , t ≥ 0, j = r , r + 1, . . .

Dj
d uj

dt
= − A

∆x
Bjuj + g̃j (t), t ≥ 0, j = 0,1, . . . , r − 1

uj (0) = u0(xj ), j = 0,1, . . .∑∞
j=0 |uj (t)|2∆x <∞, t ≥ 0

Definition
An eigensolution is the nontrivial function v(x , s) = e s tφ(x), which satisfies
a) s ∆x Pvj + AQvj = 0, j = r , r + 1, . . .
b) Re(s) ≥ 0
c) For Re(s) > 0, v(x , s) is bounded as x →∞
d) For Re(s) = 0, v(x , s) = lim

ε→0+
v(x , s + ε), where v(x , s + ε) satisfies a) and

c) with respect with s + ε

e) s ∆x Djvj + ABjvj = g̃j (t), j = 0,1, . . . , r − 1
September 26th, 2013 François Vilar Compact schemes and Inverse Lax-Wendroff 16 / 54
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Semidiscrete Fully discrete

Example: CCS-T6
Inner scheme

−
ux

j−2

12
+ ux

j −
ux

j+2

12
=

16
9

uj+1 − uj−1

2∆x
− 17

18
uj+2 − uj−2

4∆x

u−p and ux
−p, for p = 1,2, are evaluated by extrapolation in the outflow

case, and ILW or SILW in the inflow case

Normal mode analysis: uj(t) = e s t φj where φj = C K j

Characteristic equation, with s̃ = s ∆x
|A|

s̃
(

K 2 − 1
12
(
K 4 + 1

))
+ sgn(A)

(
16
18
(
K 3 − K

)
− 17

72
(
K 4 − 1

))
= 0

Only two roots of the resolvent equation yield |K | ≤ 1
Thus, the general solution has the form

φj = C1 K j
1 + C2 K j

2,

where K1, K2 the two roots with |K | < 1 and C1, C2 two constants
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Semidiscrete Fully discrete

Boundary conditions
Substituting the general solution into the two boundary conditions for
j = 0 and j = 1 yield a 2× 2 system of equations
For example, in the outflow case (A = −1) with extrapolation boundary

s̃ (72φ0 − 6φ2) +
1647

10
φ0 − 363φ1 + 358φ2 − 234φ3 +

177
2
φ4 −

71
5
φ5 = 0

s̃ (72φ1 − 6φ3)− 71
5
φ0 +

159
2
φ1 − 150φ2 + 74φ3 − 21φ4 +

33
10
φ5 = 0

This system has only a trivial solution unless its determinant is null

Outcome
The extrapolation outflow boundary condition maintain the stability for
any CCS and any value of C0 (no eigensolution)
The ILW inflow boundary condition maintain the stability for any CCS
and any value of C0 (no eigensolution)
The stability of the CCS with the SILW inflow boundary condition
depends on the value of C0 and on the number of leading terms ks

September 26th, 2013 François Vilar Compact schemes and Inverse Lax-Wendroff 18 / 54
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Semidiscrete Fully discrete

CCS-T6 provided with SILW inflow boundary
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(a) One leading term
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(b) Two leading terms

Figure : Maximum of the real part of the eigenvalues as function of C0 for the CCS-T6
scheme with the SILW boundary condition with one and two leading terms.
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Semidiscrete Fully discrete

CCS-T6 provided with SILW inflow boundary
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- 0.8

- 0.6

- 0.4

- 0.2

Max H Re H s L L

CCST6 -SILW3

Figure : Maximum of the real part of the eigenvalues as function of C0 for the CCS-T6
scheme with the SILW boundary condition with three leading terms.
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Semidiscrete Fully discrete

Time discretization
We use the third-order TVD Runge-Kutta method
Let us consider the general system

d u
dt

= F (t ,u)

We derive the eigenvalue problem setting F (t ,u) = s u

un+1 = (1 + µ+
µ2

2
+
µ3

6
) un,

where un = u(x , tn) and µ = s ∆t = s̃ |A|∆t
∆x

This is nothing but a Taylor expansion of the exponential eµ

Assuming a solution of the form un = zn u0, where z is a complex
number, the stability domain of the considered time discretization writes

|z(µ)| ≤ 1, where z(µ) = 1 + µ+
µ2

2
+
µ3

6
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Semidiscrete Fully discrete

Normal mode analysis

Semidiscrete case: uj (tn+1) = e s ∆t uj (tn) = e s̃ |A|∆t
∆x uj (tn)

Re(s) ≤ 0 and s is not a generalized eigenvalue =⇒ Stability

Fully discrete case: un+1
j = z(s ∆t) un

j = z(s̃ |A|∆t
∆x ) un

j

|z| ≤ 1 and z is not a generalized eigenvalue =⇒ Stability

We introduce the CFL condition: CFL = |A|∆t
∆x

We substitute in the time discretization resolvent equation the
eigenvalues s̃ we have found in the semidiscrete G-K-S analysis

Procedure
We start the stability analysis with the same CFL condition than for the
periodic boundary case
If the fully discrete scheme is not stable under this CFL (∃ z, |z| ≥ 1), we
use a decreasing sequence of CFL condition,re-performing at each step
to stability analysis
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Semidiscrete Fully discrete

Outcome

The extrapolation outflow boundary condition maintain the stability for
any RK3-CCS and any value of C0 (no eigensolution), under the same
CFL than for the periodic boundary case

The ILW inflow boundary condition maintain the stability for any
RK3-CCS and any value of C0 (no eigensolution), under the same CFL
than for the periodic boundary case

The stability of the CCS with the SILW inflow boundary condition
depends on the value of C0 and of the number of leading terms ks.
The fully discrete scheme would be stable under the same CFL than for
the periodic boundary case or not stable for any CFL, depending on the
number of leading terms
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Semidiscrete Fully discrete

RK3-CCST6 provided with SILW inflow boundary

0.2 0.4 0.6 0.8 1.0

C0
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max H Abs H z L L

CCST6 -SILW1

(a) One leading term
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max H Abs H z L L

CCST6 -SILW2

(b) Two leading terms

Figure : Maximum of the absolute value of the eigenvalues as function of C0 for the
RK3-CCST6 scheme with the SILW boundary condition with one and two leading
terms.
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Semidiscrete Fully discrete

RK3-CCST6 provided with SILW inflow boundary

0.2 0.4 0.6 0.8 1.0

C0
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CCST6 -SILW3

Figure : Maximum of the absolute value of the eigenvalues as function of C0 for the
RK3-CCST6 scheme with the SILW boundary condition with three leading terms.
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Semidiscrete Fully discrete

G-K-S theory advantages
Analytical analysis of the stability
The stability of the finite-domain problem is broken into the summation of
three simpler problems
Analysis independent of the mesh resolution

G-K-S theory disadvantages
Complex theory
Very heavy algebra (not practical for very high-order of accuracy)
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Semidiscrete Fully discrete

Initial Boundary Value Problem
We consider the following initial boundary value problem

∂ u
∂t

+ A
∂ u
∂x

= 0, x ∈ [xA, xB], t ≥ 0,

u(xA, t) = g(t), t ≥ 0,

u(x ,0) = u0(x), x ∈ [xA, xB],

We assume A > 0

Cartesian grid
Uniform mesh {xj}j=0,...,n such as

x0 − CA∆x = xA ≤ x0 < x1 < · · · < xn ≤ xB = xn + CB∆x

where CA ∈ [0,1] and CB ∈ [0,1]

The grid points x0 and xn are not necessarily located on the boundaries
xA and xB
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Semidiscrete Fully discrete

Discretization
Central compact scheme is used at the inner points
The ghost points located at the outflow boundary condition are evaluated
by an extrapolation procedure
The ghost points located at the inflow boundary condition are evaluated
either by the ILW procedure or its simplified version SILW
Finally, the semidiscrete scheme yields a linear system of equations
expressed in a matrix-vector form as

P
d U
dt

= − A
∆x

QU,

where P is invertible and U = (u0,u1, . . . ,un)t
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Semidiscrete Fully discrete

Normal mode analysis
Assuming a solution of the form u(x , t) = e s t u0(x), the semidiscrete
scheme yields

s̃ PU = −sgn(A) QU,

where s̃ = s ∆x
|A| being the considered eigenvalue

Thus, we compute the eigenvalues of matrix −sgn(A) P−1Q
As previously, the semidiscrete scheme provided with the considered
boundary conditions, on the studied mesh, is stable if the whole
eigenvalue spectrum lies in the left-hand plane (Re(s̃) ≤ 0)
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Semidiscrete Fully discrete

CCS provided with extrapolation-ILW boundary conditions
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Eigenvalue Spectrum with 40 cells, Ca=0.4 and Cb=0.2

E4 : max(Re(s))=−0.0003856

E6 : max(Re(s))=−0.00069336

E8 : max(Re(s))=−0.0010668

E10 : max(Re(s))=−0.0015115

(a) CCS-E
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Eigenvalue Spectrum with 40 cells, Ca=0.4 and Cb=0.2

T4 : max(Re(s))=−0.00050452

T6 : max(Re(s))=−0.00073019

T8 : max(Re(s))=−0.001209

T10 : max(Re(s))=−0.0017871

T12 : max(Re(s))=−0.002469

(b) CCS-T

Figure : The eigenvalue spectrum of the semi-discrete central compact schemes,
closed with an Inverse Lax-Wendroff procedure for the inflow boundary, and
extrapolation for the outflow boundary, with 40 cells and CA = 0.4 and CB = 0.2.
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Semidiscrete Fully discrete

CCS-P provided with extrapolation-ILW boundary conditions
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Eigenvalue Spectrum with 40 cells, Ca=0.4 and Cb=0.2

P6 : max(Re(s))=−0.0010051

P8 : max(Re(s))=−0.0011175

P10 : max(Re(s))=−0.0017569

P12 : max(Re(s))=−0.0025953

P14 : max(Re(s))=−0.0035623

Figure : The eigenvalue spectrum of the semi-discrete CCS-P schemes, closed with
an Inverse Lax-Wendroff procedure for the inflow boundary, and extrapolation for the
outflow boundary, with 40 cells and CA = 0.4 and CB = 0.2.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW1 boundary conditions
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.2 and Cb=0.3

20 cells : max(Re(s))=0.65853
40 cells : max(Re(s))=0.65853
80 cells : max(Re(s))=0.65853
160 cells : max(Re(s))=0.65853
320 cells : max(Re(s))=0.65853

Figure : The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with
one term for the inflow boundary, and extrapolation for the outflow boundary, with
CA = 0.2.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW1 boundary conditions
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.55 and Cb=0.3

20 cells : max(Re(s))=−0.0064844

40 cells : max(Re(s))=−0.00074396

80 cells : max(Re(s))=−8.8206e−05

160 cells : max(Re(s))=−1.073e−05

320 cells : max(Re(s))=−1.3231e−06

(a) CA = 0.55
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.7 and Cb=0.3

20 cells : max(Re(s))=−0.0032569

40 cells : max(Re(s))=−0.00032212

80 cells : max(Re(s))=−3.551e−05

160 cells : max(Re(s))=−4.1648e−06

320 cells : max(Re(s))=−5.0422e−07

(b) CA = 0.7

Figure : The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with
one term for the inflow boundary, and extrapolation for the outflow boundary.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW1 boundary conditions
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(a) G-K-S analysis
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Particular eigenvalue real part of CCST6−SILW1

(b) Eigenspectrum analysis

Figure : Real part of the eigenvalues responsible of instability of the CCS-T6 scheme
provided with extrapolation and SILW1 boundary conditions.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW2 boundary conditions
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.01 and Cb=0.3

20 cells : max(Re(s))=0.089934
40 cells : max(Re(s))=0.089934
80 cells : max(Re(s))=0.089934
160 cells : max(Re(s))=0.089934
320 cells : max(Re(s))=0.089934

(a) CA = 0.01
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.2 and Cb=0.3

20 cells : max(Re(s))=−0.008756

40 cells : max(Re(s))=−0.0010934

80 cells : max(Re(s))=−0.00013445

160 cells : max(Re(s))=−1.6623e−05

320 cells : max(Re(s))=−2.0653e−06

(b) CA = 0.2

Figure : The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with
two terms for the inflow boundary, and extrapolation for the outflow boundary.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW2 boundary conditions
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(a) G-K-S analysis
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(b) Eigenspectrum analysis

Figure : Real part of the eigenvalues responsible of instability of the CCS-T6 scheme
provided with extrapolation and SILW2 boundary conditions.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW3 boundary conditions
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.1 and Cb=0.3

20 cells : max(Re(s))=−0.0032245

40 cells : max(Re(s))=−0.00034206

80 cells : max(Re(s))=−3.9015e−05
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320 cells : max(Re(s))=−5.6793e−07

(a) CA = 0.1
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CCS−T6 Eigenvalue Spectrum with 20 to 320 cells , Ca=0.8 and Cb=0.3

20 cells : max(Re(s))=−0.0043544

40 cells : max(Re(s))=−0.00048434

80 cells : max(Re(s))=−5.6993e−05

160 cells : max(Re(s))=−6.9121e−06

320 cells : max(Re(s))=−8.5112e−07

(b) CA = 0.8

Figure : The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with
three terms for the inflow boundary, and extrapolation for the outflow boundary.
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Semidiscrete Fully discrete

CCS-T6 provided with extrapolation-SILW3 boundary conditions
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(b) Eigenspectrum analysis

Figure : Real part of the eigenvalues responsible of instability of the CCS-T6 scheme
provided with extrapolation and SILW3 boundary conditions.
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Semidiscrete Fully discrete

Outcome
The CCS semidiscrete schemes provided with extrapolation outflow
boundary condition and ILW inflow boundary condition are stable for any
CCS and values of CA and CB

The stability of the CCS provided with extrapolation outflow boundary
condition and SILW inflow boundary condition depends on the values of
CA and CB and on the number of leading terms ks

For some specific value of CA, the eigenvalue spectrum of CCS provided
with extrapolation and simplified inverse Lax-Wendroff boundaries may
present some particular eigenvalues independent of the resolution
These particular eigenvalues correspond to the solution of the eigenvalue
problem solved in the G-K-S stability analysis
Since the extrapolation boundary brings no instability, the two different
approaches lead to the same results
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Semidiscrete Fully discrete

Discretization
We recall the semidiscrete system obtained previously

P
d U
dt

= − A
∆x

QU

We apply to this ODE the third-order TVD Runge-Kutta method
Doing so, the fully discretize problem can be written as

Un+1 = G Un,

where Un and Un+1 are the solution vectors at time tn and tn+1

The operator G writes

G = Id − sgn(A)
|A|∆t

∆x
P−1Q +

(
|A|∆t

∆x

)2(
P−1Q

)2 − sgn(A)

(
|A|∆t

∆x

)3(
P−1Q

)3
,

where Id is the identity matrix
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Semidiscrete Fully discrete

Normal mode analysis
Assuming a solution of form un = zn u0, the eigenvalue problem writes

z Un = G
(
|A|∆t

∆x

)
Un

We set the condition CFL =
|A|∆t

∆x
We compute the eigenvalues of matrix G(CFL)

The fully discrete scheme provided with the considered boundary
conditions, on the studied mesh, is stable if the whole eigenvalue
spectrum lies in the unit circle

Procedure
We start the stability analysis with the same CFL condition than for the
periodic boundary case
If the fully discrete scheme is not stable under this CFL (∃ z, |z| ≥ 1), we
use a decreasing sequence of CFL condition,re-computing at each step
the eigenvalues
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Semidiscrete Fully discrete

RK3-CCS provided with extrapolation-ILW boundary conditions
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RK3−CCSE Discrete Eigenvalue Spectrum with 80 cells , Ca=0.3 and Cb=0.3

E4 cells : max(Abs(z))=0.99793

E6 : max(Abs(z))=0.99766

E8 : max(Abs(z))=0.9983

E10 : max(Abs(z))=0.99826

(a) CCS-E
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RK3−CCST Discrete Eigenvalue Spectrum with 80 cells , Ca=0.3 and Cb=0.3

T4 cells : max(Abs(z))=0.99732

T6 : max(Abs(z))=0.9983

T8 : max(Abs(z))=0.99826

T10 : max(Abs(z))=0.99849

T12 : max(Abs(z))=0.998

(b) CCS-T

Figure : The eigenvalue spectrum of the RK3-CCS, closed with an Inverse
Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow
boundary, with 40 cells and CA = 0.3 and CB = 0.3.
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Semidiscrete Fully discrete

RK3-CCSP provided with extrapolation-ILW boundary conditions
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RK3−CCSP Discrete Eigenvalue Spectrum with 80 cells , Ca=0.3 and Cb=0.3

P6 cells : max(Abs(z))=0.99788

P8 : max(Abs(z))=0.99845

P10 : max(Abs(z))=0.99826

P12 : max(Abs(z))=0.99828

P14 : max(Abs(z))=0.99733

Figure : The eigenvalue spectrum of the RK3-CCSP, closed with an Inverse
Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow
boundary, with 40 cells and CA = 0.3 and CB = 0.3.

September 26th, 2013 François Vilar Compact schemes and Inverse Lax-Wendroff 43 / 54



Introduction Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

Semidiscrete Fully discrete

RK3-CCST6 with extrapolation-SILW1 boundary conditions
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells, Ca=0.2 and Cb=0.3

40 cells : max(Abs(z))=2.5887
80 cells : max(Abs(z))=2.5887
160 cells : max(Abs(z))=2.5887
320 cells : max(Abs(z))=2.5887

Figure : The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure
with one term for the inflow boundary, and extrapolation for the outflow boundary, with
CA = 0.2.
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Semidiscrete Fully discrete

RK3-CCST6 with extrapolation-SILW1 boundary conditions
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells, Ca=0.55 and Cb=0.3

40 cells : max(Abs(z))=0.99467

80 cells : max(Abs(z))=0.99828

160 cells : max(Abs(z))=0.99903

320 cells : max(Abs(z))=0.9992

(a) CA = 0.55
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells , Ca=0.7 and Cb=0.3

40 cells : max(Abs(z))=0.99499

80 cells : max(Abs(z))=0.99833

160 cells : max(Abs(z))=0.99904

320 cells : max(Abs(z))=0.9992

(b) CA = 0.7

Figure : The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure
with one term for the inflow boundary, and extrapolation for the outflow boundary.
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Semidiscrete Fully discrete

RK3-CCST6 with extrapolation-SILW1 boundary conditions
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(b) Eigenspectrum analysis

Figure : Real part of the eigenvalues responsible of instability of the RK3-CCST6
scheme provided with extrapolation and SILW1 boundary conditions.
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Semidiscrete Fully discrete

RK3-CCST6 with extrapolation-SILW2 boundary conditions
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells, Ca=0.01 and Cb=0.3

40 cells : max(Abs(z))=1.3075

80 cells : max(Abs(z))=1.3075

160 cells : max(Abs(z))=1.3075

320 cells : max(Abs(z))=1.3075

(a) CA = 0.01
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells, Ca=0.2 and Cb=0.3

40 cells : max(Abs(z))=0.99423

80 cells : max(Abs(z))=0.99822

160 cells : max(Abs(z))=0.99903

320 cells : max(Abs(z))=0.9992

(b) CA = 0.2

Figure : The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure
with two terms for the inflow boundary, and extrapolation for the outflow boundary.
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Semidiscrete Fully discrete

RK3-CCST6 with extrapolation-SILW2 boundary conditions
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(a) G-K-S analysis
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(b) Eigenspectrum analysis

Figure : Real part of the eigenvalues responsible of instability of the RK3-CCST6
scheme provided with extrapolation and SILW2 boundary conditions.
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Semidiscrete Fully discrete

RK3-CCST6 with extrapolation-SILW3 boundary conditions
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells, Ca=0.1 and Cb=0.3
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(a) CA = 0.1
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RK3−CCST6 Discrete Eigenvalue Spectrum with 40 to 320 cells, Ca=0.8 and Cb=0.3

40 cells : max(Abs(z))=0.99506
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(b) CA = 0.8

Figure : The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure
with three terms for the inflow boundary, and extrapolation for the outflow boundary.
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RK3-CCST6 with extrapolation-SILW3 boundary conditions
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(b) Eigenspectrum analysis

Figure : Real part of the eigenvalues responsible of instability of the RK3-CCST6
scheme provided with extrapolation and SILW3 boundary conditions.
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Outcome
The RK3-CCS schemes provided with extrapolation outflow boundary
condition and ILW inflow boundary condition are stable for any CCS and
values of CA and CB

The stability of the RK3-CCS schemes provided with extrapolation
outflow boundary condition and SILW inflow boundary condition
depends on the values of CA and CB and on the number of leading
terms ks

For some specific value of CA, the eigenvalue spectrum of RK3-CCS
provided with extrapolation and simplified inverse Lax-Wendroff
boundaries may present some particular eigenvalues independent of the
resolution
These particular eigenvalues correspond to the solution of the eigenvalue
problem solved in the G-K-S stability analysis
Since the extrapolation boundary brings no oscillations, the two different
approaches lead to the same results
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Number of terms required in the SILW procedure

Scheme Leading terms
CCS-E4 3
CCS-E6 4
CCS-E8 5
CCS-E10 5

Scheme Leading terms
CCS-T4 3
CCS-T6 3
CCS-T8 5
CCS-T10 8
CCS-T12 9

Scheme Leading terms
CCS-P6 4
CCS-P8 5
CCS-P10 7
CCS-P12 9
CCS-P14 9

Table : Minimum numbers of leading terms required by the different RK3-CCS
schemes to remain stable under the same CFL than for periodic boundary conditions.

September 26th, 2013 François Vilar Compact schemes and Inverse Lax-Wendroff 52 / 54



Introduction Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

Semidiscrete Fully discrete

Linear advection case with CA = 0.001 and CB = 0.3

-1e+20

-8e+19

-6e+19

-4e+19

-2e+19

 0

 2e+19

 4e+19

 6e+19

-1 -0.5  0  0.5  1

solution

CCS scheme

(a) Two leading terms, t = 10
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(b) Three leading terms, t = 10000

Figure : Numerical results obtained with RK3-CCST6 scheme provided with
extrapolation and SILW boundaries in the linear advection case (A = 1) on x ∈ [−1, 1],
with the initial and boundary condition u0(x) = 0.25 + 0.5 sin(π x) and
u(−1, t) = 0.25− 0.5 sin(π (1 + t)), with 40 cells and CFL = 0.96.

September 26th, 2013 François Vilar Compact schemes and Inverse Lax-Wendroff 53 / 54



Introduction Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

1 Introduction

2 Central Compact Schemes

3 Boundary conditions

4 G-K-S theory

5 Eigenvalue spectrum

6 Conclusion

September 26th, 2013 François Vilar Compact schemes and Inverse Lax-Wendroff 53 / 54



Introduction Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

Conclusions
Both G-K-S and eigenspectrum stability analysis have been done, and
gave perfectly consistent results
CCS have been proved to remain stable under the same CFL than the
periodic boundaries case and for any boundary position, provided with

outflow extrapolation boundary
inflow inverse Lax-Wendroff boundary

The number of leading terms required by the SILW procedure for the
central compact scheme to remain stable has been determined

Perspectives
Design an energy stability
Adapt CCS and ILW to the SBP-SAT operators
Apply the studied schemes and boundaries to more practical applications
(Euler, Navier-Stokes, . . . )
M.H. CARPENTER, D. GOTTLIEB AND S. ABARBANEL, Time-stable
conditions for finite-difference schemes solving hyperbolic systems:
methodology and application to high-order compact schemes. JCP, 1994.
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