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Introduction

1D scalar conservation law
∂ u
∂t

+
∂ F (u)
∂x

= 0, (x , t) ∈ ω × [0,T ]

u(x ,0) = u0(x), x ∈ ω

(k + 1)th order discretization
{ωi}i a partition of ω, such that ωi = [xi− 1

2
, xi+ 1

2
]

0 = t0 < t1 < · · · < tN = T a partition of the temporal domain [0,T ]

uh(x , t) the numerical solution, such that uh|ωi = ui
h ∈ Pk (ωi)

ui
h(x , t) =

k+1∑

m=1

ui
m(t)σm(x)

Local variational formulation on ωi
∫

ωi

∂ ui
h

∂t
ψ dx =

∫

ωi

F (ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

Fi+ 1
2
= F

(
ui

h(xi+ 1
2
, t),ui+1

h (xi+ 1
2
, t)
)

numerical flux
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Introduction

Subcell resolution of DG scheme
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Figure : Linear advection of composite signal after 4 periods
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Introduction Spurious oscillations - Gibbs phenomenon

Gibbs phenomenon
High-order schemes leads to spurious oscillations near discontinuities
Leads potentially to nonlinear instability, non-admissible solution, crash
Vast literature of how prevent this phenomenon to happen:

=⇒ a priori and a posteriori limitations

A priori limitation
Artificial viscosity
Flux limitation
Slope/moment limiter
Hierarchical limiter
ENO/WENO limiter

A posteriori limitation
MOOD (“Multi-dimensional Optimal Order Detection”)
Subcell finite volume limitation
Subcell limitation through flux reconstruction
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Introduction Objectives

Admissible numerical solution
Maximum principle / positivity preserving
Prevent the code from crashing (for instance avoiding NaN)
Ensure the conservation of the scheme

Spurious oscillations
Discrete maximum principle
Relaxing condition for smooth extrema

Accuracy
Retain as much as possible the subcell resolution of the DG scheme
Minimize the number of subcell solutions to recompute
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DG as a subcell finite volume Flux reconstruction
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DG as a subcell finite volume Flux reconstruction

DG as a subcell finite volume
Rewrite DG scheme as a specific finite volume scheme on subcells
Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Local variational formulation
∫

ωi

∂ ui
h

∂t
ψ dx =

∫

ωi

F (ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

Substitute F (ui
h) with F i

h ∈ Pk+1(ωi) (collocated or L2 projection)
∫

ωi

∂ ui
h

∂t
ψ dx = −

∫

ωi

∂ F i
h

∂x
ψ dx +

[
(F i

h −F)ψ
]xi+ 1

2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

Subcell decomposition through k + 2 flux points
xi−1

2
xi+1

2

x̃0 x̃1 x̃2 x̃k x̃k+1
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DG as a subcell finite volume Flux reconstruction

Subresolution basis functions
ωi is subdivided in k + 1 subcells Si

m = [x̃m−1, x̃m]

Let us introduce the k + 1 basis functions {φm}m such that ∀ψ ∈ Pk (ωi)

∫

ωi

φm ψ dx =

∫

Si
m

ψ dx , ∀m = 1, . . . , k + 1

Let us define ψm =
1
|Si

m|

∫

Si
m

ψ dx the subcell mean value

Local variational formulation
∫

ωi

∂ ui
h

∂t
φm dx = −

∫

ωi

∂ F i
h

∂x
φm dx +

[
(F i

h −F)φm

]xi+ 1
2

xi− 1
2

∂ ui
m

∂t
= − 1
|Si

m|

([
F i

h

]x̃m

x̃m−1

−
[
φm

(
F i

h −F
) ]xi+ 1

2

xi− 1
2

)

∂ ui
m

∂t
= − 1
|Si

m|
(

F̂ i
m − F̂ i

m−1

)
Subcell finite volume
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DG as a subcell finite volume Flux reconstruction

Linear system

F̂ i
m − F̂ i

m−1 =
[
F i

h

]x̃m

x̃m−1

−
[
φm
(
F i

h −F
) ]xi+ 1

2

xi− 1
2

, ∀m = 1, . . . , k

F̂ i
0 = Fi− 1

2
and F̂ i

k+1 = Fi+ 1
2

Reconstructed flux

F̂ i
m = F i

h(x̃m)− C(m)

i− 1
2

(
F i

h(xi− 1
2
)−Fi− 1

2

)
− C(m)

i+ 1
2

(
F i

h(xi+ 1
2
)−Fi+ 1

2

)

C(m)

i− 1
2
=

k+1∑

p=m+1

φp(xi− 1
2
) and C(m)

i+ 1
2
=

m∑

p=1

φp(xi+ 1
2
)

Correction terms for symmetric distribution of {x̃m}m

Let B ∈ Rk+1 be defined as Bj = (−1)j+1 (k + 1)(k + j)!
(j!)2(k + 1− j)!

ξ̃m =
x̃m − xi− 1

2

xi+ 1
2
− xi− 1

2

, ∀m = 0, . . . , k + 1

C(m)

i− 1
2
= 1−

(
ξ̃m, . . . , (ξ̃m)

k+1
)t
· B and C(m)

i+ 1
2
= C(k+1−m)

i− 1
2
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DG as a subcell finite volume Flux reconstruction

Subcell finite volume equivalent to DG
∫

ωi

∂ ui
h

∂t
ψ dx =

∫

ωi

F (ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

∂ ui
m

∂t
= − 1
|Si

m|
(

F̂ i
m − F̂ i

m−1

)
, ∀m = 1, . . . , k + 1

F̂ i
m = F i

h(x̃m)− C(m)

i− 1
2

(
F i

h(xi− 1
2
)−Fi− 1

2

)
− C(m)

i+ 1
2

(
F i

h(xi+ 1
2
)−Fi+ 1

2

)

Reconstructed flux taking into account flux jumps

x̃k+1

xi−1
2

xi+1
2

x̃0 x̃1 x̃mx̃m−1

Fi+1
2

F i
k+1

F̂ i
1

F i
0

F i
m−1

F̂ i
m

F i
m

F i
1

Fi−1
2

F̂ i
m−1
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DG as a subcell finite volume Flux reconstruction

Flux reconstruction / CPR
The correction functions defined as

gLB(x) =
k+1∑

m=0

C(m)

i− 1
2

Lm(x) and gRB(x) =
k+1∑

m=0

C(m)

i+ 1
2

Lm(x)

are nothing but the right and left Radau Pk polynomials

H. T. HUYNH, A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods. 18th AIAA Computational
Fluid Dynamics Conference Miami, 2007.

Z.J. WANG and H. GAO, A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods
for conservation laws on mixed grids. JCP, 2009.

Subcell finite volume
Reconstructed flux is used as a numerical flux for subcell FV schemes
This demonstration is not restricted to the flux collocation case
The correction terms are very simple and explicitly defined
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A posteriori subcell limitation
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A posteriori subcell limitation Projection

Projection on subcells of RKDG solution

ui
h =

∑k+1
m=1 ui

m σm is uniquely defined by its k + 1 submean values

Introducing the matrix Π defined as πmp =
1
|Si

m|

∫

Si
m

σp dx , then

Π
(

ui,n
1 , . . . ,ui,n

k+1

)t
=
(

u i,n
1 , . . . ,u i,n

k+1

)t

Polynomial solution and its associated submean values

x̃k x̃k+1x̃0 x̃1

xi+1
2

u i,n
k+1

xi−1
2

u i,n
1 u i,n

2
u i,n
k

u
i,n
h

(x)
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A posteriori subcell limitation Detection

Set up

We assume that, for each cell, the {u i,n
m }m are admissible

Compute a candidate solution un+1
h from un

h through unlimited DG

For each subcell, check if the submean values {u i,n+1
m }m are ok

Physical admissibility detection (PAD)

Check if u i,n+1
m lies in an convex physical admissible set (maximum

principle for SCL, positivity of the pressure and density for Euler, . . . )
Check if there is any NaN values

Numerical admissibility detection (NAD)
Discrete maximum principle DMP on submean values:

min
p
(u i−1,n

p ,u i,n
p ,u i+1,n

p ) ≤ u i,n+1
m ≤ max

p
(u i−1,n

p ,u i,n
p ,u i+1,n

p )

This criterion needs to be relaxed to preserve smooth extrema
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A posteriori subcell limitation Correction

Limited reconstructed flux

x̃k+1x̃1

F̂ i
k+1

x̃m−1 x̃mx̃0

xi−1
2

xi+1
2

F̂ i
0

F̂ i
1

F̂ i
m−1

F̂ i
m

F̃ i
m

F̃ i
m−1

Figure : Correction of the reconstructed flux
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A posteriori subcell limitation Correction

Flowchart
1 Project u i,n+1

h to get the submean values u i,n+1
m

2 Check u i,n+1
m through PAD and NAD

3 If u i,n+1
m is admissible go further in time, otherwise modify the

corresponding reconstructed flux values

F̃ i
m−1 = F(u i,n

m−1,u
i,n
m ) and F̃ i

m = F(u i,n
m ,u i,n

m+1)

4 Through the corrected reconstructed flux, recompute the submean values
for tagged subcells and their first neighbors

5 Return to point 2

Conclusion
The limitation only affects the DG solution at the subcell scale
The limited scheme is conservative at the subcell level
In practice, few submean values need to be recomputed
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Numerical results 1D scalar conservation laws
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 9th order limited DG: NAD criterion
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 9th order limited DG on 10 cells: NAD and PAD criteria
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 9th order limited DG on 10 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 9th order limited DG on 10 cells: subcell DMP + 2nd order correction
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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Figure : 9th order limited DG after 4 periods on 30 cells
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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Figure : 9th order limited DG after 4 periods on 30 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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Figure : 9th order limited DG after 4 periods on 30 cells: subcell DMP + 2nd
order correction
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Numerical results 1D scalar conservation laws

Burgers equation: u0(x) = sin(2π x)

Figure : 9th order limited DG on 10 cells for tf = 0.7
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Numerical results 1D scalar conservation laws

Burgers equation: expansion and shock waves collision

Figure : 9th order limited DG on 15 cells for tf = 1.2
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Numerical results 2D scalar conservation laws

2D grid and subgrid
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Figure : 5x5 Cartesian grid and corresponding subgrid for a 6th order DG
scheme
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Numerical results 2D scalar conservation laws

Linear advection of a square signal after 1 period
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(d) Solution profile

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period
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Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period
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(g) Solution profile for y = 0.25
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Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period: x = 0.25
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Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y))
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Figure : 6th order unlimited DG on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y))

(k) Solution map (l) Detected subcells

Figure : 6th order limited DG on a 10x10 Cartesian mesh until t = 0.5
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y)) at t = 0.5
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Figure : 6th order limited DG density profile on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with composite signal
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Figure : 6th order limited DG on a 10x10 Cartesian mesh
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Numerical results 1D Euler system

Sod shock tube problem
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Figure : 9th order limited DG on 10 cells
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Numerical results 1D Euler system

Hell shock tube problem
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Figure : 9th order limited DG on 10 cells
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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Figure : 7th order limited DG on 50 cells
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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Initial solution on x ∈ [0,1]
u0(x) = sin(2πx)
Periodic boundary conditions
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Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period
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Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
20 8.07E-11 9.00 8.97E-11 9.00
1

40 1.58E-13 9.00 1.75E-13 9.00
1

80 3.08E-16 - 3.42E-16 -

Table: Convergence rates for the linear advection case for a 9th order DG scheme
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Linear advection of a square signal after 1 period
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Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Linear advection of a square signal after 10 periods
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Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Linear advection of a square signal after 50 periods
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Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Initial solution on (x , y) ∈ [0,1]2

u0(x , y) = sin(2π(x + y))
Periodic boundary conditions
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Figure : Linear advection with a 6th DG scheme and 5x5 grid after 1 period
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Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
5 2.10E-6 6.23 2.86E-6 6.24
1

10 2.79E-8 6.00 3.77E-8 6.00
1

20 3.36E-10 - 5.91E-10 -

Table: Convergence rates for the linear advection case for a 6th order DG scheme
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Initial solution on x ∈ [0,1] for γ = 3
ρ0(x) = 1 + 0.9999999 sin(πx), u0(x) = 0, p0(x) = (ρ0(x))γ

Periodic boundary conditions
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Figure : Smooth flow problem with 5th DG scheme and 10 cells at t = 0.1
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Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
20 1.48E-5 4.35 2.02E-5 4.18
1

40 9.09E-7 4.88 1.38E-6 4.87
1

80 3.09E-8 4.95 4.73E-8 4.86
1

160 1.00E-9 - 1.63E-9 -

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG

François Vilar (IMAG) Subcell limitation through flux reconstruction june 12th, 2018 37 / 37



Numerical results References

Double rarefaction problem
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(u) Density
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Figure : 9th order limited DG on 20 cells
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Leblanc shock tube problem
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Figure : 3rd order vs 7th order limited DG on 100 cells
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Shock acoustic-wave interaction problem
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Figure : 3rd order vs 7th order limited DG on 50 cells
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Shock acoustic-wave interaction problem
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Figure : 3rd order vs 7th order limited DG on 50 cells
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