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1 Discontinuous Galerkin (DG) introduction with

scalar conservation laws

1.1 Discretization
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goal: approximate our solution by polynomials on
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, xi is the centroid of the cell Ci.

1.2 Numerical flux and L2 stability

goal: access to the L2 norm of our solution and insure stability

Mono-dimensional problems:
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Multi-dimensional problems:

• same procedure and we find a similar expression for the numerical flux, on the face fe, with Mfe
a positive definite
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1.3 Limitation
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Influence of the orders with
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To enforce monotonicity, we perform a vertex based slope limitation [2].
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In order to avoid the loss of accuracy at smooth extrema, we set α
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l ). For high order, we calculate a nondecreasing sequence of cor-
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encountered, we stop the limitation.

1.4 Numerical results
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Linear advection

Burgers
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2 Lagrangian hydrodynamics

2.1 Gas dynamics in Lagrangian formalism

ρ0d(1/ρ)

dt
−

∂u

∂X
= 0

ρ0du

dt
+

∂p

∂X
= 0

ρ0dE

dt
+

∂pu

∂X
= 0

with ρ the density of the fluid, ρ0 its initial density, u its velocity and E
its total energy. For a thermodynamic closure of this system, we introduce

an equation of state p = p(ρ, ε) with ε = E − u2

2 .
We may, for example, use the ideal gas law : p = ρ(γ − 1)ε.

2.2 Numerical results
2.2.1 Acoustic

• linearization by small perturbations of the gas dynamics system, around a steady flow ⇒ (p, u) system
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Influence of limitations

We notice that if we just perform the limitation on the
system unknowns, some oscillations remain. But, by di-
agonalizing the system, we get around this constraint.
For the acoustic system, it is quite simple because these
invariants can be found explicitly (due to the linear
property of this system) but for the other cases, it isn’t
so obvious.

2.2.2 Shallow water

• small water height, an incompressible fluid, a sliding condition at the bottom and average of the equations on the
water height ⇒ (h, u) system where h is the water height
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Riemann invariants limitation

As before, if we apply our limitation on the intrinsic system variables, some oscil-
lations remain. The problem is this equations system is nonlinear, and so we have
only informations on the differential of the Riemann invariants. In order to access
to this quantities, we’ve tested two different options :

• these differentials being quite simple, we were able to integrate and differentiate
them and so, perform our limitation on the Riemann invariants.

•we linearize, on each cells, the equations and thus, we obtain linear approximation
of the Riemann invariants on each cells. Then, the limitation is easy.

2.2.3 Gas dynamics
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We see that the oscillations are quite strong at the shock front, without any limita-
tion. So, to keep our solution monotone, as we did for the shallow water equations,
we linearize the system on each cells and obtain linear quantities on which we can
perform our limitation. The problem is how can we limit our last unknown, E, the
total energy. We have tested different ways but at the end, some little oscillations
still remain.

3 Conclusions and perspectives

• Our DG methods have been validated and so, order influence on the accuracy was observed

• Different physical problems, linears and nonlinears, were studied in a Lagrangian formalism and explicit
formulas for the flux, to have L2 or entropy stability, have been shown

• Difficulties residing in limiting nonlinear systems have been noticed

• Multidimensional studies will be pursued for the Lagrangian hydrodynamics problem presented before

• Lagrangian schemes, using the initial mesh, will be studied, in order to avoid the cells deformation problem
due to high orders
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