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Discontinuous Galerkin schemes High-order geometries

DG schemes
Natural extension of Finite Volume method
Piecewise polynomial approximation of the solution in the cells
High-order scheme to achieve high accuracy

Procedure
Local variational formulation
Choice of the numerical fluxes (global L2 stability, entropy inequality)
Time discretization - TVD multistep Runge-Kutta

C.-W. SHU, Discontinuous Galerkin methods: General approach and
stability. 2008.

Limitation - vertex-based hierarchical slope limiters

D. KUZMIN, A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods. J. Comp. Appl. Math., 2009.
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Discontinuous Galerkin schemes High-order geometries

Circular polar grid: 10× 1 cells
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Taylor-Green exact motion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V. DOBREV, T. ELLIS, T. KOLEV AND R. RIEBEN, High Order Curvilinear
Finite Elements for Lagrangian Hydrodynamics. Part I: General
Framework, 2010. Presentation available at
https://computation.llnl.gov/casc/blast/blast.html
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Finite volume schemes on moving mesh
J. K. Dukowicz: CAVEAT scheme
A computer code for fluid dynamics problems with large distorsion and internal slip, 1986

B. Després: GLACE scheme
Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, 2005

P.-H. Maire: EUCCLHYD scheme
A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, 2007

G. Kluth: Hyperelasticity
Discretization of hyperelasticity with a cell-centered Lagrangian scheme, 2010

S. Del Pino: Curvilinear Finite Volume method
A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian
coordinates, 2010

P. Hoch: Finite Volume method on unstructured conical meshes
Extension of ALE methodology to unstructured conical meshes, 2011

DG scheme on initial mesh
R. Loubère: DG scheme for Lagrangian hydrodynamics
A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve
hydrodynamics problems, 2004
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Flow transformation of the fluid
The fluid flow is described mathematically by the continuous
transformation, Φ, so-called mapping such as Φ : X −→ x = Φ(X , t)

����

��

∂Ω

X

N

n

∂ω

x = Φ(X, t)

Ω ω

Φ

Figure: Notation for the flow map.

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual)
coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor
F = ∇XΦ = ∂ x

∂X and J = det F > 0
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Trajectory equation
d x
dt

= U(x , t), x(X ,0) = X

Material time derivative
d
dt

f (x , t) =
∂

∂t
f (x , t) + U �∇x f (x , t)

Transformation formulas
FdX = dx Change of shape of infinitesimal vectors
ρ0 = ρ J Mass conservation
JdV = dv Measure of the volume change
JF−tNdS = nds Nanson formula

Differential operators transformations
∇xP = 1

J∇X � (P JF−t) Gradient operator

∇x � U = 1
J∇X � (JF−1U) Divergence operator
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Piola compatibility condition
∇x � G = 0, where G = JF−t is the cofactor matrix of F∫

Ω

∇x � G dV =

∫
∂Ω

G N dS =

∫
∂ω

n ds = 0

Gas dynamics system written in its total Lagrangian form
d F
dt
−∇X U = 0 Deformation gradient tensor equation

ρ0 d
dt

(
1
ρ

)−∇X � (GtU) = 0 Specific volume equation

ρ0 d U
dt

+∇X � (P G) = 0 Momentum equation

ρ0 d E
dt

+∇X � (GtPU) = 0 Total energy equation

Thermodynamical closure

EOS: P = P(ρ, ε) where ε = E − 1
2 U2
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

(s + 1) th order DG discretization

Let {Ωc}c be a partition of the domain Ω into polygonal cells

{σc
k}k=0...K basis of P s(Ωc), where K + 1 = (s+1)(s+2)

2

φc
h(X , t) =

K∑
k=0

φc
k (t)σc

k (X ) approximate function of φ(X , t) on Ωc

Definitions

Center of mass X c = (Xc ,Yc)t =
1

mc

∫
Ωc

ρ0(X ) X dV ,

where mc is the constant mass of the cell Ωc

The mean value 〈φ〉c =
1

mc

∫
Ωc

ρ0(X )φ(X ) dV

of the function φ over the cell Ωc

The associated scalar product (φ � ψ)c =

∫
Ωc

ρ0(X )φ(X )ψ(X ) dV
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Taylor expansion on the cell, located at the center of mass

φ(X ) = φ(X c) +
s∑

k=1

k∑
j=0

(X −Xc)k−j (Y − Yc)j

j!(k − j)!

∂k φ

∂X k−j∂Y j (X c) + o(‖X −X c‖s)

(s + 1) th order scheme polynomial Taylor basis
The first-order polynomial component and the associated basis function

φc
0 = 〈φ〉c and σc

0 = 1

The k th-order polynomial components and the associated basis functions

φc
k(k+1)

2 +j
= (∆Xc)k−j (∆Yc)j ∂k φ

∂X k−j∂Y j (X c),

σc
k(k+1)

2 +j
= 1

j!(k−j)!

[(
X−Xc
∆Xc

)k−j(
Y−Yc
∆Yc

)j
−
〈(

X−Xc
∆Xc

)k−j(
Y−Yc
∆Yc

)j
〉

c

]
,

where 0 < k ≤ s, j = 0 . . . k , ∆Xc = Xmax−Xmin
2 and ∆Yc = Ymax−Ymin

2

H. LUO, J. D. BAUM AND R. LÖHNER, A DG method based on a Taylor
basis for the compressible flows on arbitrary grids. J. Comp. Phys., 2008.
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Outcome
First moment associated to the basis function σc

0 = 1 is the mass
averaged value

φc
0 = 〈φ〉c

The successive moments can be identified as the successive derivatives
of the function expressed at the center of mass of the cell

φc
k(k+1)

2 +j
= (∆Xc)k−j (∆Yc)j ∂k φ

∂X k−j∂Y j (X c)

The first basis function is orthogonal to the other ones

(σc
0 � σc

k )c = mc δ0k

Same basis functions regardless the shape of the cells (squares,
triangles, generic polygonal cells)
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Lagrangian gas dynamics equation type

ρ0 dφ
dt

+∇X � (Gt f ) = 0, where f is the flux function

G = JF−t is the cofactor matrix of F

Local variational formulations∫
Ωc

ρ0 dφ
dt
σc

j dV =
K∑

k=0

dφc
k

dt

∫
Ωc

ρ0σc
j σ

c
k dV

=

∫
Ωc

f � G∇Xσ
c
j dV −

∫
∂Ωc

f � σc
j GNdS

Geometric Conservation Law (GCL)
Equation on the first moment of the specific volume∫

Ωc

d J
dt

dV =
d |ωc |

dt
=

∫
Ωc

∇X � (Gt U) dV =

∫
∂Ωc

U � GNdS
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Mass matrix properties∫
Ωc

ρ0σc
j σ

c
k dV =

(
σc

j � σc
k
)

c
generic coefficient of the symmetric positive

definite mass matrix(
σc

0 � σc
k

)
c = mc δ0k mass averaged equation is independent of the other

polynomial basis components equations

Interior terms∫
Ωc

f � G∇Xσ
c
j dV is evaluated through the use of a two-dimensional

high-order quadrature rule

Boundary terms∫
∂Ωc

f � σc
j GNdS required a specific treatment to ensure the GCL

It remains to determine the numerical fluxes
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Requirements
Consistency of vector GNdS = nds at the interfaces of the cells
Continuity of vector GN at cell interfaces on both sides of the interface
Preservation of uniform flows, G = JF−t the cofactor matrix∫

Ωc

G∇Xσ
c
j dV =

∫
∂Ωc

σc
j GNdS ⇐⇒

∫
Ωc

σc
j (∇X � G) dV = 0

Generalization of the weak form of the Piola compatibility condition

Tensor F discretization
Discretization of tensor F by means of a mapping
defined on triangular cells
Partition of the polygonal cells in the initial
configuration into non-overlapping triangles

Ωc =
ntri⋃
i=1

T c
i

Ωc

T c
i
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

(s + 1) th order continuous mapping function
We develop Φ on the Finite Elements basis functions Λi

q in Ti of degree s

Φi
h(X , t) =

∑
q∈Q(i)

Λi
q(X ) Φq(t),

where Q(i) is the Ti control points set, including the vertices {p−,p,p+}
Φq(t) = Φ(X q , t) = xq

dΦq

dt
= Uq =⇒ d

dt
Fi (X , t) =

∑
q∈Q(i)

Uq(t)⊗∇X Λi
q(X )

G. KLUTH AND B. DESPRÉS, Discretization of hyperelasticity on
unstructured mesh with a cell-centered Lagrangian scheme. J. Comp.
Phys., 2010.

Outcome
Satisfaction of the Piola compatibility condition everywhere
Consistency and continuity of the Eulerian normal GN
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Example of the fluid flow mapping in the fourth order case

p−

p+p+

p−
p p

Φ

Ti

τi

Figure: Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using s + 1 control points
Projection of the continuous mapping function Φ on the face fpp+

x |pp+ (ζ) = xpλp(ζ) +
∑

q∈Q(pp+)\{p,p+}

xqλq(ζ) + xp+λp+ (ζ),

where Q(pp+) is the face control points set, ζ ∈ [0,1] the curvilinear
abscissa and λq the 1D Finite Element basis functions of degree s
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Local variational formulations∫
Ωc

ρ0 dφ
dt
σc

j dV = −
ntri∑
i=1

∫
T c

i

G∇Xσ
c
j � f dV

+
∑

p∈P(c)

∫ p+

p
f � σc

j GNdL

p+

p−

p

Npp+

Np−p

f−
pc

f+
pc

f−
p+c

f qc

Ωc

Polynomial assumptions on face fpp+

f |pp+ (ζ) = f +
pcλp(ζ) +

∑
q\{p,p+}

f qcλq(ζ) + f−p+cλp+ (ζ)

Polynomial properties on face fpp+

G N dL|pp+ (ζ) = n dl|pp+ =
∂x
∂ζ

dζ|pp+ × ez =
∑

q

∂λq

∂ζ
(ζ) (xq × ez)

σc
j|pp+

(ζ) = σc
j (X p)λp(ζ) +

∑
q\{p,p+}

σc
j (X q)λq(ζ) + σc

j (X p+ )λp+ (ζ)
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Fundamental assumptions
U±pc = Up, ∀c ∈ C(p) and UqL = UqR = Uq

PU = P U =⇒ (PU)±pc = P±pc Up and (PU)qc = Pqc Uq

Procedure
Analytical integration + index permutation

Weighted control point normals

l+,j
pc n+,j

pc =
(∫ 1

0 λp|pp+ (ζ)σj|pp+ (ζ) ∂x
∂ζ dζ|pp+

)
× ez

l−,jpc n−,jpc =
(∫ 1

0 λp|p−p
(ζ)σj|p−p

(ζ) ∂x
∂ζ dζ|p−p

)
× ez

l jpcnj
pc = l−,jpc n−,jpc + l+,j

pc n+,j
pc

l jqcnj
qc =

(∫ 1
0 λq|pp+ (ζ)σj|pp+ (ζ) ∂x

∂ζ dζ|pp+

)
× ez

j th moment of the subcell forces

F j
pc = P−pc l−,jpc n−,jpc + P+

pc l+,j
pc n+,j

pc and F j
qc = Pqc l jqcnj

qc
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Semi-discrete equations GCL compatible

∫
Ωc

ρ0 d
dt

(
1
ρ

)σc
j dV = −

ntri∑
i=1

∫
T c

i

U � G∇Xσ
c
j dV +

∑
p∈P(c)

Up � l jpcnj
pc +

∑
q\{p,p+}

Uq � l jqcnj
qc


∫

Ωc

ρ0 d U
dt
σc

j dV =
ntri∑
i=1

∫
T c

i

PG∇Xσ
c
j dV −

∑
p∈P(c)

F j
pc +

∑
q\{p,p+}

F j
qc


∫

Ωc

ρ0 d E
dt
σc

j dV =
ntri∑
i=1

∫
T c

i

PU � G∇Xσ
c
j dV −

∑
p∈P(c)

Up � F j
pc +

∑
q\{p,p+}

Uq � F j
qc


Equation on the first moment of the specific volume

d |ωc |
dt

=

∫
∂Ωc

U � GNdL =
∑

p∈P(c)

Up � l0pcn0
pc +

∑
q∈Q(pp+)\{p,p+}

Uq � l0qcn0
qc
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Entropic semi-discrete equation
Fundamental assumption P U = P U
The use of variational formulations and Piola condition leads to∫

Ωc

ρ0 θ
d η
dt

dV =

∫
∂Ωc

(P − Ph)(Uh − U) � GNdS,

where η is the specific entropy and θ the absolute temperature defined by
means of the Gibbs identity

Entropic semi-discrete equation

A sufficient condition to satisfy
∫

Ωc

ρ0 θ
d η
dt

dV ≥ 0 is

P − Ph = −Z (U − Uh) �
GN
‖GN‖ = −Z (U − Uh) � n,

where Z ≥ 0 has the physical dimension of a density times a velocity

September 3rd, 2013 François Vilar High-order Cell-Centered DG scheme 19 / 46



Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Subcell forces definitions
F j

pc = P−pc l−,jpc n−,jpc + P+
pc l+,j

pc n+,j
pc and F j

qc = Pqc l jqcnj
qc

j th moment of the control point subcell forces

The use of P = Pc
h − Zc (U − Uc

h) � n to calculate F j
pc and F j

qc leads to

F j
pc = Pc

h (X p, t) l jpcnj
pc −Mj

pc (Up − Uc
h(X p, t)),

F j
qc = Pc

h (X q , t) l jqcnj
qc −Mj

qc (Uq − Uc
h(X q , t)),

Mj
pc = Zc

(
l−,jpc n−,jpc ⊗ n−,0pc + l+,j

pc n+,j
pc ⊗ n+,0

pc

)
and Mj

qc = Zc l jqcnj
qc ⊗ n0

qc

Momentum and total energy conservation∑
c∈C(p)

F 0
pc = 0 and F 0

qL + F 0
qR = 0
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Nodal velocity

Mp Up =
∑

c∈C(p)

[
Pc

h (X p, t) l0pcn0
pc + M0

pc Uc
h(X p, t)

]
,

where Mp =
∑

c∈C(p)

M0
pc is a positive definite matrix

Face control point velocity

Mq Uq = Mq

(
ZL UL

h(X q) + ZR UR
h (X q)

ZL + ZR

)
− PR

h (X q)− PL
h (X q)

ZL + ZR
l0qLn0

qL,

where Mq = 1
ZR

M0
qR = 1

ZL
M0

qL = l0qLn0
qL ⊗ n0

qL is positive semi-definite

1D approximate Riemann problem solution

(Uq � n0
qL) =

(
ZL UL

h(X q) + ZR UR
h (X q)

ZL + ZR

)
� n0

qL −
PR

h (X q)− PL
h (X q)

ZL + ZR
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Tangential component of the face control point velocity

(Uq � t0
qL) =

(
ZL UL

h(X q) + ZR UR
h (X q)

ZL + ZR

)
� t0

qL

Face control point velocity

Uq =
ZL UL

h(X q) + ZR UR
h (X q)

ZL + ZR
− PR

h (X q)− PL
h (X q)

ZL + ZR
n0

qL

Deformation tensor
d
dt

Fi =
∑

Q∈Q(i)

UQ ⊗∇X Λi
Q

Interior points velocity
UQ = Uc

h(X Q , t)
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Riemann invariants differentials
dαt = dU � t
dα− = d( 1

ρ )− 1
ρa dU � n

dα+ = d( 1
ρ ) + 1

ρa dU � n

dαE = dE − U � dU + P d( 1
ρ )

a denotes the sound speed

Mean value linearization
αc

t,h = Uc
h � t

αc
−,h = ( 1

ρ )c
h − 1

Zc
Uc

h � n

αc
+,h = ( 1

ρ )c
h + 1

Zc
Uc

h � n

αc
E,h = Ec

h − Uc
0 � Uc

h + Pc
0 ( 1

ρ )c
h

where Zc = ac
0ρ

c
0

System variables polynomial approximation components
( 1
ρ )c

k = 1
2 (αc

+,k + αc
−,k )

Uc
k = 1

2 Zc(αc
+,k − αc

−,k )n + αc
t,k t

Ec
k = αc

E,k + 1
2 Zc(αc

+,k − αc
−,k )Uc

0 � n + αc
t,k Uc

0 � t − 1
2 Pc

0 (αc
+,k + αc

−,k )

Unit direction ensuring symmetry preservation

n =
Uc

0

‖Uc
0‖

and t = ez ×
Uc

0

‖Uc
0‖
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DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Composed derivatives

FT = ∇XrΦT (X r , t)
= ∇XΦH(X , t) ◦ ∇XrΦ0(X r )

= FH F0

JT (X r , t) = JH(X , t) J0(X r )

Mass conservation
ρ0 J0 = ρ JT

ΦH(X, t)

ΦT (Xr, t)

Ωc

ωc

Ωr
c

Xr

X

x

Φ0(Xr)

Modification of the mass matrix∫
ωc

ρ
dψc

h
dt

σj dω =
K∑

k=0

dψk

dt

∫
Ωr

c

ρ0 J0 σj σk dΩr time rate of change of

successive moments of function ψ
New definitions of mass matrix, of mass averaged value and of the
associated scalar product
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Second-order scheme Third-order scheme

Sedov point blast problem on a Cartesian grid
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(a) Second-order scheme.
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2nd order

(b) Density profile.

Figure: Point blast Sedov problem on a Cartesian grid made of 30× 30 cells: density.

September 3rd, 2013 François Vilar High-order Cell-Centered DG scheme 25 / 46



Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

Second-order scheme Third-order scheme

Sedov point blast problem on unstructured grids
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(a) Polygonal grid.
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(b) Triangular grid.

Figure: Unstructured initial grids for the point blast Sedov problem.
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Second-order scheme Third-order scheme

Sedov point blast problem a polygonal grid
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(a) Second-order scheme.
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(b) Density profile.

Figure: Point blast Sedov problem on an unstructured grid made of 775 polygonal
cells: density map.
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Sedov point blast problem on a triangular grid
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(a) Second-order scheme.
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(b) Density profile.

Figure: Point blast Sedov problem on an unstructured grid made of 1100 triangular
cells: density map.
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Noh problem
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(a) Second-order scheme.
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(b) Density profile.

Figure: Noh problem on a Cartesian grid made of 50× 50 cells: density.
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Second-order scheme Third-order scheme

Taylor-Green vortex problem, introduced by R. Rieben (LLNL)

(a) Second-order scheme. (b) Exact solution.

Figure: Motion of a 10× 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
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Second-order scheme Third-order scheme

Taylor-Green vortex problem

L1 L2 L∞
h Eh

L1
qh

L1
Eh

L2
qh

L2
Eh

L∞ qh
L∞

1
10 5.06E-3 1.94 6.16E-3 1.93 2.20E-2 1.84
1

20 1.32E-3 1.98 1.62E-3 1.97 5.91E-3 1.95
1

40 3.33E-4 1.99 4.12E-4 1.99 1.53E-3 1.98
1

80 8.35E-5 2.00 1.04E-4 2.00 3.86E-4 1.99
1

160 2.09E-5 - 2.60E-5 - 9.69E-5 -

Table: Rate of convergence computed on the pressure at time t = 0.1.
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Polar grids
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(a) Non-uniform grid.
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(b) One angular cell grid.

Figure: Polar initial grids for the Sod shock tube problem.
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Symmetry preservation
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(a) First-order scheme.
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(b) Second-order scheme.

Figure: Sod shock tube problem on a polar grid made of 100× 3 non-uniform cells.
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Symmetry preservation
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(a) Density map.
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(b) Density profile.

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of
100× 3 non-uniform cells.
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One angular cell polar Sod shock tube problem
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(a) Density map.
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(b) Density profile.

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of
100× 1 cells.
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Variant of the incompressible Gresho vortex problem

(a) First-order scheme. (b) Second-order scheme.

Figure: Motion of a polar grid defined in polar coordinates by (r , θ) ∈ [0, 1]× [0, 2π],
with 40× 18 cells at t = 1: zoom on the zone (r , θ) ∈ [0, 0.5]× [0, 2π].
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Second-order scheme Third-order scheme

Variant of the incompressible Gresho vortex problem

(a) Third-order scheme. (b) Exact solution.

Figure: Motion of a polar grid defined in polar coordinates by (r , θ) ∈ [0, 1]× [0, 2π],
with 40× 18 cells at t = 1: zoom on the zone (r , θ) ∈ [0, 0.5]× [0, 2π].
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Variant of the Gresho vortex problem
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(b) Velocity profile.

Figure: Gresho variant problem on a polar grid defined in polar coordinates by
(r , θ) ∈ [0, 1]× [0, 2π], with 40× 18 cells at t = 1.
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Variant of the Gresho vortex problem
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Figure: Gresho variant problem on a polar grid defined in polar coordinates by
(r , θ) ∈ [0, 1]× [0, 2π], with 40× 18 cells at t = 1: density profile.

September 3rd, 2013 François Vilar High-order Cell-Centered DG scheme 39 / 46



Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

Second-order scheme Third-order scheme

Kidder isentropic compression
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Figure: Third-order DG solution for a Kidder isentropic compression problem on a
polar grid made of 10× 3 cells: pressure map.
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Kidder isentropic compression
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Figure: Third-order DG solution for a Kidder isentropic compression problem on a
polar grid made of 10× 3 cells: density profile.
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Taylor-Green vortex problem

(a) Third-order scheme. (b) Exact solution.

Figure: Motion of a 10× 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
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Second-order scheme Third-order scheme

Taylor-Green vortex problem

L1 L2 L∞
h Eh

L1
qh

L1
Eh

L2
qh

L2
Eh

L∞ qh
L∞

1
10 2.67E-4 2.96 3.36E-4 2.94 1.21E-3 2.86
1

20 3.43E-5 2.97 4.36E-5 2.96 1.66E-4 2.93
1

40 4.37E-6 2.99 5.59E-6 2.98 2.18E-5 2.96
1

80 5.50E-7 2.99 7.06E-7 2.99 2.80E-6 2.99
1

160 6.91E-8 - 8.87E-8 - 3.53E-7 -

Table: Rate of convergence computed on the pressure at time t = 0.1.
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Second-order scheme Third-order scheme

Taylor-Green vortex problem

D.O.F N Eh
L1

Eh
L2

Eh
L∞ time (sec)

600 24× 25 2.67E-2 3.31E-2 8.55E-2 2.01
2400 48× 50 1.36E-2 1.69E-2 4.37E-2 11.0

Table: First-order DG scheme at time t = 0.1.

D.O.F N Eh
L1

Eh
L2

Eh
L∞ time (sec)

630 14× 15 2.76E-3 3.33E-3 1.07E-2 2.77
2436 28× 29 7.52E-4 9.02E-4 2.73E-3 11.3

Table: Second-order DG scheme without limitation at time t = 0.1.

D.O.F N Eh
L1

Eh
L2

Eh
L∞ time (sec)

600 10× 10 2.67E-4 3.36E-4 1.21E-3 4.00
2400 20× 20 3.43E-5 4.36E-5 1.66E-4 30.6

Table: Third-order DG scheme without limitation at time t = 0.1.
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Sedov point blast problem on a Cartesian grid
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(a) Third-order scheme.
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Figure: Point blast Sedov problem on a Cartesian grid made of 30× 30 cells: density.
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Conclusions
Development of 2nd and 3rd order DG schemes for the 2D gas dynamics
system in a total Lagrangian formalism
GCL and Piola compatibility condition ensured by construction
Dramatic improvement of symmetry preservation by means of
third-order DG scheme
Riemann invariants limitation

Perspectives
High-order limitation

Positivity preserving limitation
WENO limiter

Code parallelization
Development of a 3rd order DG scheme on moving mesh
Extension to 3D
Extension to ALE and solid dynamics
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