High-order cell-centered DG scheme for Lagrangian hydrodynamics

F. Vilar ${ }^{1}$, P.- H. Maire ${ }^{2}$, R. Abgrall ${ }^{3}$

${ }^{1}$ Brown University, Division of Applied Mathematics 182 George Street, Providence, RI 02912
${ }^{2}$ CEA CESTA, BP 2, 33114 Le Barp, France
${ }^{3}$ INRIA and University of Bordeaux, Team Bacchus, 351 Cours de la Libération, 33405 Talence Cedex, France

September 3rd, 2013

energle atomique $\boldsymbol{~}$ energies alternatives

BROWN
(1) Introduction
(2) Cell-Centered Lagrangian schemes
(3) Lagrangian and Eulerian descriptions

4 Discretization
(5) Numerical results

6 Conclusion
(2) Cell-Centered Lagrangian schemes

3 Lagrangian and Eulerian descriptions

4 Discretization
(5) Numerical results

6 Conclusion

DG schemes

- Natural extension of Finite Volume method
- Piecewise polynomial approximation of the solution in the cells
- High-order scheme to achieve high accuracy

Procedure

- Local variational formulation
- Choice of the numerical fluxes (global L^{2} stability, entropy inequality)
- Time discretization - TVD multistep Runge-Kutta
C.-W. SHU, Discontinuous Galerkin methods: General approach and stability. 2008.
- Limitation - vertex-based hierarchical slope limiters
D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comp. Appl. Math., 2009.

Circular polar grid: 10×1 cells

Taylor-Green exact motion

回 V. Dobrev, T. Ellis, T. Kolev and R. Rieben, High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics. Part I: General Framework, 2010. Presentation available at https://computation.llnl.gov/casc/blast/blast.html

(9) Introduction

(2) Cell-Centered Lagrangian schemes

(3) Lagrangian and Eulerian descriptions

4 Discretization
(5) Numerical results

6 Conclusion

Finite volume schemes on moving mesh

- J. K. Dukowicz: CAVEAT scheme

A computer code for fluid dynamics problems with large distorsion and internal slip, 1986

- B. Després: GLACE scheme

Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, 2005

- P.-H. Maire: EUCCLHYD scheme

A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, 2007

- G. Kluth: Hyperelasticity

Discretization of hyperelasticity with a cell-centered Lagrangian scheme, 2010

- S. Del Pino: Curvilinear Finite Volume method

A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, 2010

- P. Hoch: Finite Volume method on unstructured conical meshes Extension of ALE methodology to unstructured conical meshes, 2011

DG scheme on initial mesh

- R. Loubère: DG scheme for Lagrangian hydrodynamics

A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems, 2004

(9) Introduction

2 Cell-Centered Lagrangian schemes

(3) Lagrangian and Eulerian descriptions

4 Discretization
(5) Numerical results

6 Conclusion

Flow transformation of the fluid

- The fluid flow is described mathematically by the continuous transformation, $\boldsymbol{\Phi}$, so-called mapping such as $\boldsymbol{\Phi}: \boldsymbol{X} \longrightarrow \boldsymbol{X}=\boldsymbol{\Phi}(\boldsymbol{X}, t)$

Figure: Notation for the flow map.
where \boldsymbol{X} is the Lagrangian (initial) coordinate, \boldsymbol{x} the Eulerian (actual) coordinate, \boldsymbol{N} the Lagrangian normal and \boldsymbol{n} the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor

- $\mathrm{F}=\nabla_{X} \Phi=\frac{\partial \boldsymbol{x}}{\partial X} \quad$ and $\quad J=\operatorname{det} \mathrm{F}>0$

Trajectory equation

- $\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t}=\boldsymbol{U}(\boldsymbol{x}, t), \quad \boldsymbol{x}(\boldsymbol{X}, 0)=\boldsymbol{X}$

Material time derivative

$$
\text { - } \frac{\mathrm{d}}{\mathrm{~d} t} f(\boldsymbol{x}, t)=\frac{\partial}{\partial t} f(\boldsymbol{x}, t)+\boldsymbol{U} \cdot \nabla_{x} f(\boldsymbol{x}, t)
$$

Transformation formulas

- $\operatorname{Fd} \boldsymbol{X}=\mathrm{d} \boldsymbol{x}$
- $\rho^{0}=\rho J$
- $J \mathrm{~d} V=\mathrm{d} v$
- $\mathrm{JF}^{-t} \boldsymbol{N} \mathrm{~d} S=\boldsymbol{n} \mathrm{d} \boldsymbol{s}$

Change of shape of infinitesimal vectors
Mass conservation
Measure of the volume change
Nanson formula

Differential operators transformations

- $\nabla_{X} P=\frac{1}{J} \nabla_{X} \cdot\left(P \mathrm{JF}^{-\mathrm{t}}\right)$
- $\nabla_{X} \cdot \boldsymbol{U}=\frac{1}{J} \nabla_{X} \cdot\left(J^{-1} \boldsymbol{U}\right)$

Gradient operator
Divergence operator

Piola compatibility condition

- $\nabla_{X} \cdot G=\mathbf{0}$, where $\mathrm{G}=\mathrm{JF}^{-\mathrm{t}}$ is the cofactor matrix of F

$$
\int_{\Omega} \nabla_{X} \cdot G \mathrm{~d} V=\int_{\partial \Omega} \mathbf{G} \boldsymbol{N} \mathrm{d} S=\int_{\partial \omega} \boldsymbol{n} \mathrm{d} \boldsymbol{s}=\mathbf{0}
$$

Gas dynamics system written in its total Lagrangian form

- $\frac{\mathrm{dF}}{\mathrm{d} t}-\nabla_{X} \boldsymbol{U}=0$

Deformation gradient tensor equation

- $\rho^{0} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{\rho}\right)-\nabla_{X} \cdot\left(\mathrm{G}^{\mathrm{t}} \boldsymbol{U}\right)=0$

Specific volume equation

- $\rho^{0} \frac{\mathrm{~d} \boldsymbol{U}}{\mathrm{~d} t}+\nabla_{X} \cdot(P \mathrm{G})=\mathbf{0}$

Momentum equation

- $\rho^{0} \frac{\mathrm{~d} E}{\mathrm{~d} t}+\nabla_{X} \cdot\left(\mathrm{G}^{\mathrm{t}} P \boldsymbol{U}\right)=0$

Total energy equation

Thermodynamical closure

- EOS: $P=P(\rho, \varepsilon)$ where $\varepsilon=E-\frac{1}{2} U^{2}$

(9) Introduction

(2) Cell-Centered Lagrangian schemes
(3) Lagrangian and Eulerian descriptions

4 Discretization
(5) Numerical results
(6) Conclusion

$(s+1)^{\text {th }}$ order DG discretization

- Let $\left\{\Omega_{c}\right\}_{c}$ be a partition of the domain Ω into polygonal cells
- $\left\{\sigma_{k}^{c}\right\}_{k=0 \ldots K}$ basis of $\mathbb{P}^{s}\left(\Omega_{c}\right)$, where $K+1=\frac{(s+1)(s+2)}{2}$
- $\phi_{h}^{c}(\boldsymbol{X}, t)=\sum_{k=0}^{K} \phi_{k}^{c}(t) \sigma_{k}^{c}(\boldsymbol{X})$ approximate function of $\phi(\boldsymbol{X}, t)$ on Ω_{c}

Definitions

- Center of mass $\mathcal{X}_{c}=\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right)^{\mathrm{t}}=\frac{1}{m_{c}} \int_{\Omega_{c}} \rho^{0}(\boldsymbol{X}) \boldsymbol{X} \mathrm{d} V$ where m_{c} is the constant mass of the cell Ω_{c}
- The mean value $\langle\phi\rangle_{c}=\frac{1}{m_{c}} \int_{\Omega_{c}} \rho^{0}(\boldsymbol{X}) \phi(\boldsymbol{X}) \mathrm{d} V$ of the function ϕ over the cell Ω_{c}
- The associated scalar product $(\phi \cdot \psi)_{c}=\int_{\Omega_{c}} \rho^{0}(\boldsymbol{X}) \phi(\boldsymbol{X}) \psi(\boldsymbol{X}) \mathrm{d} V$

Taylor expansion on the cell, located at the center of mass
$\phi(\boldsymbol{X})=\phi\left(\mathcal{X}_{c}\right)+\sum_{k=1}^{s} \sum_{j=0}^{k} \frac{\left(X-\mathcal{X}_{c}\right)^{k-j}\left(Y-\mathcal{Y}_{c}\right)^{j}}{j!(k-j)!} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}}\left(\mathcal{X}_{c}\right)+o\left(\left\|\boldsymbol{X}-\mathcal{X}_{c}\right\|^{s}\right)$
$(s+1)^{\text {th }}$ order scheme polynomial Taylor basis

- The first-order polynomial component and the associated basis function

$$
\phi_{0}^{c}=\langle\phi\rangle_{c} \quad \text { and } \quad \sigma_{0}^{c}=1
$$

- The $k^{\text {th }}$-order polynomial components and the associated basis functions

$$
\begin{gathered}
\phi_{\frac{K(k+1)}{2}+j}^{c}=\left(\Delta X_{c}\right)^{k-j}\left(\Delta Y_{c}\right)^{j} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}}\left(\mathcal{X}_{c}\right), \\
\sigma_{\frac{k(k+1)}{c}+j}^{c}=\frac{1}{j!(k-j)!}\left[\left(\frac{X-\mathcal{X}_{c}}{\Delta X_{c}}\right)^{k-j}\left(\frac{Y-\mathcal{Y}_{c}}{\Delta Y_{c}}\right)^{j}-\left\langle\left(\frac{X-\mathcal{X}_{c}}{\Delta X_{c}}\right)^{k-j}\left(\frac{Y-\mathcal{Y}_{c}}{\Delta Y_{c}}\right)^{j}\right\rangle_{c}\right],
\end{gathered}
$$

$$
\text { where } 0<k \leq s, j=0 \ldots k, \Delta X_{c}=\frac{X_{\max }-X_{\min }}{2} \text { and } \Delta Y_{c}=\frac{Y_{\max }-Y_{\min }}{2}
$$

國 H. Luo, J. D. Baum and R. Löhner, A DG method based on a Taylor basis for the compressible flows on arbitrary grids. J. Comp. Phys., 2008.

Outcome

- First moment associated to the basis function $\sigma_{0}^{c}=1$ is the mass averaged value

$$
\phi_{0}^{c}=\langle\phi\rangle_{c}
$$

- The successive moments can be identified as the successive derivatives of the function expressed at the center of mass of the cell

$$
\phi_{\frac{k(k+1)}{c}+j}^{c}=\left(\Delta X_{c}\right)^{k-j}\left(\Delta Y_{c}\right)^{j} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}}\left(\mathcal{X}_{c}\right)
$$

- The first basis function is orthogonal to the other ones

$$
\left(\sigma_{0}^{c} \cdot \sigma_{k}^{c}\right)_{c}=m_{c} \delta_{0 k}
$$

- Same basis functions regardless the shape of the cells (squares, triangles, generic polygonal cells)

Lagrangian gas dynamics equation type

- $\rho^{0} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}+\nabla_{X} \cdot\left(\mathrm{G}^{\mathrm{t}} \boldsymbol{f}\right)=0, \quad$ where \boldsymbol{f} is the flux function

$$
G=J F^{-t} \text { is the cofactor matrix of } F
$$

Local variational formulations

$$
\text { - } \begin{aligned}
\int_{\Omega_{c}} \rho^{o} \frac{\mathrm{~d} \phi}{\mathrm{~d} t} \sigma_{j}^{c} \mathrm{~d} V & =\sum_{k=0}^{K} \frac{\mathrm{~d} \phi_{k}^{c}}{\mathrm{~d} t} \int_{\Omega_{c}} \rho^{0} \sigma_{j}^{c} \sigma_{k}^{c} \mathrm{~d} V \\
& =\int_{\Omega_{c}} \boldsymbol{f} \cdot \mathrm{G} \nabla_{X} \sigma_{j}^{c} \mathrm{~d} V-\int_{\partial \Omega_{c}} \bar{f} \cdot \sigma_{j}^{c} \mathrm{G} N \mathrm{~d} S
\end{aligned}
$$

Geometric Conservation Law (GCL)

- Equation on the first moment of the specific volume

$$
\int_{\Omega_{c}} \frac{\mathrm{~d} J}{\mathrm{~d} t} \mathrm{~d} V=\frac{\mathrm{d}\left|\omega_{c}\right|}{\mathrm{d} t}=\int_{\Omega_{c}} \nabla_{X} \cdot\left(\mathrm{G}^{\mathrm{t}} \boldsymbol{U}\right) \mathrm{d} V=\int_{\partial \Omega_{c}} \overline{\boldsymbol{U}} \cdot \mathrm{G} N \mathrm{~d} S
$$

Mass matrix properties

- $\int_{\Omega_{c}} \rho^{0} \sigma_{j}^{c} \sigma_{k}^{c} \mathrm{~d} V=\left(\sigma_{j}^{c} \cdot \sigma_{k}^{c}\right)_{c}$
generic coefficient of the symmetric positive definite mass matrix
- $\left(\sigma_{0}^{c} \cdot \sigma_{k}^{c}\right)_{c}=m_{c} \delta_{0 k}$ mass averaged equation is independent of the other polynomial basis components equations

Interior terms

- $\int_{\Omega_{c}} \boldsymbol{f} \cdot \mathrm{G} \nabla_{X} \sigma_{j}^{c} \mathrm{~d} V$ is evaluated through the use of a two-dimensional high-order quadrature rule

Boundary terms

- $\int_{\partial \Omega_{c}} \overline{\boldsymbol{f}} \cdot \sigma_{j}^{c} \mathrm{GNd} S$ required a specific treatment to ensure the GCL
- It remains to determine the numerical fluxes

Requirements

- Consistency of vector $\mathrm{GNd} S=\boldsymbol{n d} \boldsymbol{s}$ at the interfaces of the cells
- Continuity of vector $G N$ at cell interfaces on both sides of the interface
- Preservation of uniform flows, $\mathrm{G}=\mathrm{JF}^{-\mathrm{t}}$ the cofactor matrix

$$
\int_{\Omega_{c}} \mathrm{G} \nabla_{X} \sigma_{j}^{c} \mathrm{~d} V=\int_{\partial \Omega_{c}} \sigma_{j}^{c} \mathrm{GN} \mathrm{~d} S \Longleftrightarrow \int_{\Omega_{c}} \sigma_{j}^{c}\left(\nabla_{X} \cdot \mathrm{G}\right) \mathrm{d} V=\mathbf{0}
$$

Generalization of the weak form of the Piola compatibility condition

Tensor F discretization

- Discretization of tensor F by means of a mapping defined on triangular cells
- Partition of the polygonal cells in the initial configuration into non-overlapping triangles

$$
\Omega_{c}=\bigcup_{i=1}^{n t r i} \mathcal{T}_{i}^{c}
$$

$(s+1)^{\text {th }}$ order continuous mapping function

- We develop Φ on the Finite Elements basis functions \wedge_{q}^{i} in \mathcal{T}_{i} of degree s

$$
\boldsymbol{\Phi}_{h}^{i}(\boldsymbol{X}, t)=\sum_{q \in \mathcal{Q}(i)} \Lambda_{q}^{i}(\boldsymbol{X}) \boldsymbol{\Phi}_{q}(t),
$$

where $\mathcal{Q}(i)$ is the \mathcal{T}_{i} control points set, including the vertices $\left\{p^{-}, p, p^{+}\right\}$

- $\boldsymbol{\Phi}_{q}(t)=\boldsymbol{\Phi}\left(\boldsymbol{X}_{q}, t\right)=\boldsymbol{x}_{q}$
- $\frac{\mathrm{d} \boldsymbol{\Phi}_{q}}{\mathrm{~d} t}=\boldsymbol{U}_{q} \Longrightarrow \frac{\mathrm{~d}}{\mathrm{~d} t} \mathrm{~F}_{i}(\boldsymbol{X}, t)=\sum_{q \in \mathcal{Q}(i)} \boldsymbol{U}_{q}(t) \otimes \boldsymbol{\nabla}_{X} \Lambda_{q}^{i}(\boldsymbol{X})$

围 G. Kluth and B. Després, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. J. Comp. Phys., 2010.

Outcome

- Satisfaction of the Piola compatibility condition everywhere
- Consistency and continuity of the Eulerian normal GN

Example of the fluid flow mapping in the fourth order case

Figure: Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using $s+1$ control points

- Projection of the continuous mapping function Φ on the face $f_{p p^{+}}$

$$
\boldsymbol{x}_{\mid p p^{+}}(\zeta)=\boldsymbol{x}_{p} \lambda_{p}(\zeta)+\sum_{q \in \mathcal{Q}\left(p p^{+}\right) \backslash\left\{p, p^{+}\right\}} \boldsymbol{x}_{q} \lambda_{q}(\zeta)+\boldsymbol{x}_{p^{+}} \lambda_{p^{+}}(\zeta),
$$

where $\mathcal{Q}\left(p p^{+}\right)$is the face control points set, $\zeta \in[0,1]$ the curvilinear abscissa and λ_{q} the 1D Finite Element basis functions of degree s

Polynomial assumptions on face $f_{p p^{+}}$

- $\boldsymbol{f}_{\mid p p^{+}}(\zeta)=\boldsymbol{f}_{p c}^{+} \lambda_{p}(\zeta)+\sum_{q \backslash\left\{p, p^{+}\right\}} \boldsymbol{f}_{q c} \lambda_{q}(\zeta)+\boldsymbol{f}_{p^{+} c^{-}}^{-} \lambda_{p^{+}}(\zeta)$

Polynomial properties on face $f_{p p^{+}}$

- $\mathrm{G} \boldsymbol{N} \mathrm{d} L_{l \rho p^{+}}(\zeta)=\boldsymbol{n} \mathrm{d} l_{l p \rho^{+}}=\frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d} \zeta_{l p p^{+}} \times \boldsymbol{e}_{z}=\sum_{q} \frac{\partial \lambda_{q}}{\partial \zeta}(\zeta)\left(\boldsymbol{x}_{q} \times \boldsymbol{e}_{z}\right)$
- $\sigma_{\left.j\right|_{p p^{+}} ^{c}}^{c}(\zeta)=\sigma_{j}^{c}\left(\boldsymbol{X}_{p}\right) \lambda_{p}(\zeta)+\sum_{q \backslash\left\{p, p^{+}\right\}} \sigma_{j}^{c}\left(\boldsymbol{X}_{q}\right) \lambda_{q}(\zeta)+\sigma_{j}^{c}\left(\boldsymbol{X}_{p^{+}}\right) \lambda_{p^{+}}(\zeta)$

Fundamental assumptions

- $\boldsymbol{U}_{p c}^{ \pm}=\boldsymbol{U}_{p}, \quad \forall c \in \mathcal{C}(p) \quad$ and $\quad \boldsymbol{U}_{q L}=\boldsymbol{U}_{q R}=\boldsymbol{U}_{q}$
- $\overline{P U}=\bar{P} \overline{\boldsymbol{U}} \quad \Longrightarrow \quad(P \boldsymbol{U})_{p c}^{ \pm}=P_{p c}^{ \pm} \boldsymbol{U}_{p} \quad$ and $\quad(P \boldsymbol{U})_{q c}=P_{q c} \boldsymbol{U}_{q}$

Procedure

- Analytical integration + index permutation

Weighted control point normals

$$
\begin{aligned}
& \text { - } l_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j}=\left(\int_{0}^{1} \lambda_{\left.p\right|_{p p^{+}}}(\zeta) \sigma_{\left.j\right|_{p p^{+}}}(\zeta) \frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d} \zeta_{\mid p p^{+}}\right) \times \boldsymbol{e}_{z} \\
& \text { - } I_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}=\left(\int_{0}^{1} \lambda_{\left.p\right|_{p-\rho}}(\zeta) \sigma_{\left.j\right|_{p^{-}}}(\zeta) \frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d} \zeta_{\left.\right|_{p-\rho}}\right) \times \boldsymbol{e}_{z} \\
& \text { - } I_{p c}^{j} \boldsymbol{n}_{p c}^{j}=I_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}+I_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j} \\
& \text { - } \dot{l}_{q c}^{j} \boldsymbol{n}_{q c}^{j}=\left(\int_{0}^{1} \lambda_{\left.q\right|_{p p^{+}}}(\zeta) \sigma_{\left.j\right|_{\mid p p^{+}}}(\zeta) \frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d} \zeta_{\mid p p^{+}}\right) \times \boldsymbol{e}_{z}
\end{aligned}
$$

$j^{\text {th }}$ moment of the subcell forces

- $\boldsymbol{F}_{p c}^{j}=P_{p c}^{-} l_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}+P_{p c}^{+} I_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j}$ and $\boldsymbol{F}_{q c}^{j}=P_{q c} l_{q c}^{j} \boldsymbol{n}_{q c}^{j}$

Semi-discrete equations GCL compatible

$\int_{\Omega_{c}} \rho^{0} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{1}{\rho}\right) \sigma_{j}^{c} \mathrm{~d} \boldsymbol{V}=-\sum_{i=1}^{n t r i} \int_{\mathcal{T}_{i}^{c}} \boldsymbol{U} \cdot \mathrm{G} \nabla_{x} \sigma_{j}^{c} \mathrm{~d} \boldsymbol{V}+\sum_{p \in \mathcal{P}(c)}\left(\boldsymbol{U}_{p} \cdot{ }_{p c}^{j} \boldsymbol{n}_{p c}^{j}+\sum_{q \backslash\left\{p, p^{+}\right\}} \boldsymbol{U}_{q} \cdot{ }_{q q c}^{j} \boldsymbol{n}_{q c}^{j}\right)$
$\int_{\Omega_{c}} \rho^{0} \frac{\mathrm{~d} \boldsymbol{U}}{\mathrm{~d} t} \sigma_{j}^{c} \mathrm{~d} \boldsymbol{V}=\sum_{i=1}^{n t r i} \int_{\mathcal{T}_{i}^{c}} P \mathrm{G} \nabla_{X} \sigma_{j}^{c} \mathrm{~d} V-\sum_{p \in \mathcal{P}(c)}\left(\boldsymbol{F}_{p c}^{j}+\sum_{q \backslash\left\{p, p^{+}\right\}} \boldsymbol{F}_{q c}^{j}\right)$
$\int_{\Omega_{c}} \rho^{0} \frac{\mathrm{~d} E}{\mathrm{~d} t} \sigma_{j}^{c} \mathrm{~d} \boldsymbol{V}=\sum_{i=1}^{n t r i} \int_{\mathcal{T}_{i}^{c}} \boldsymbol{P} \boldsymbol{U} \cdot \mathrm{G} \nabla \nabla_{j} \sigma_{j}^{c} \mathrm{~d} \boldsymbol{V}-\sum_{p \in \mathcal{P}(c)}\left(\boldsymbol{U}_{p} \cdot \boldsymbol{F}_{p c}^{j}+\sum_{q \backslash\left\{p, p^{+}\right\}} \boldsymbol{U}_{q} \cdot \boldsymbol{F}_{q c}^{j}\right)$

Equation on the first moment of the specific volume

$$
\text { - } \frac{\mathrm{d}\left|\omega_{c}\right|}{\mathrm{d} t}=\int_{\partial \Omega_{c}} \overline{\boldsymbol{U}} \cdot \mathrm{G} \boldsymbol{N} \mathrm{~d} L=\sum_{p \in \mathcal{P}(c)}\left(\left.\boldsymbol{U}_{p} \cdot\right|_{p c} ^{0} \boldsymbol{n}_{p c}^{0}+\left.\sum_{q \in \mathcal{Q}\left(p p^{+}\right) \backslash\left\{p, p^{+}\right\}} \boldsymbol{U}_{q} \cdot\right|_{q c} ^{0} \boldsymbol{n}_{q c}^{0}\right)
$$

Entropic semi-discrete equation

- Fundamental assumption $\overline{P \mathbf{U}}=\bar{P} \bar{U}$
- The use of variational formulations and Piola condition leads to

$$
\int_{\Omega_{c}} \rho^{0} \theta \frac{\mathrm{~d} \eta}{\mathrm{~d} t} \mathrm{~d} \boldsymbol{V}=\int_{\partial \Omega_{c}}\left(\bar{P}-P_{h}\right)\left(\boldsymbol{U}_{h}-\overline{\boldsymbol{U}}\right) \cdot \mathrm{G} \boldsymbol{N} \mathrm{~d} S,
$$

where η is the specific entropy and θ the absolute temperature defined by means of the Gibbs identity

Entropic semi-discrete equation

- A sufficient condition to satisfy $\int_{\Omega_{c}} \rho^{0} \theta \frac{\mathrm{~d} \eta}{\mathrm{~d} t} \mathrm{~d} V \geq 0$ is

$$
\bar{P}-P_{h}=-Z\left(\overline{\boldsymbol{U}}-\boldsymbol{U}_{h}\right) \cdot \frac{\mathrm{G} \boldsymbol{N}}{\|\mathrm{G} \boldsymbol{N}\|}=-Z\left(\overline{\boldsymbol{U}}-\boldsymbol{U}_{h}\right) \cdot \boldsymbol{n}
$$

where $Z \geq 0$ has the physical dimension of a density times a velocity

Subcell forces definitions

$$
\text { - } \boldsymbol{F}_{p c}^{j}=P_{p c}^{-} I_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}+P_{p c}^{+} I_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j} \quad \text { and } \quad \boldsymbol{F}_{q c}^{j}=P_{q c} l_{q c}^{j} \boldsymbol{n}_{q c}^{j}
$$

$j^{\text {th }}$ moment of the control point subcell forces

- The use of $\overline{\boldsymbol{P}}=P_{h}^{c}-Z_{c}\left(\overline{\boldsymbol{U}}-\boldsymbol{U}_{h}^{c}\right) \cdot \boldsymbol{n}$ to calculate $\boldsymbol{F}_{p c}^{j}$ and $\boldsymbol{F}_{q c}^{j}$ leads to

$$
\begin{aligned}
& \left.\boldsymbol{F}_{p c}^{j}=P_{h}^{c}\left(\boldsymbol{X}_{p}, t\right)\right)_{p c}^{j} \boldsymbol{\Lambda}_{p c}^{j}-M_{p c}^{j}\left(\boldsymbol{U}_{p}-\boldsymbol{U}_{h}^{c}\left(\boldsymbol{X}_{p}, t\right)\right), \\
& \left.\boldsymbol{F}_{q c}^{j}=P_{h}^{c}\left(\boldsymbol{X}_{q}, t\right)\right)_{{ }_{q c} \boldsymbol{n}_{q c}^{j}-M_{q c}^{j}\left(\boldsymbol{U}_{q}-\boldsymbol{U}_{h}^{c}\left(\boldsymbol{X}_{q}, t\right)\right),},
\end{aligned}
$$

$$
\mathrm{M}_{p c}^{j}=Z_{c}\left(I_{p c}^{-j, j} \boldsymbol{n}_{p c}^{-j} \otimes \boldsymbol{n}_{p c}^{-, 0}+l_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j} \otimes \boldsymbol{n}_{p c}^{+, 0}\right) \quad \text { and } \mathrm{M}_{q c}^{j}=Z_{c} l_{q c}^{j} \boldsymbol{n}_{q c}^{j} \otimes \boldsymbol{n}_{q c}^{0}
$$

Momentum and total energy conservation

$$
\text { - } \sum_{c \in \mathcal{C}(p)} \boldsymbol{F}_{p c}^{0}=\mathbf{0} \text { and } \boldsymbol{F}_{q L}^{0}+\boldsymbol{F}_{q R}^{0}=\mathbf{0}
$$

Nodal velocity

- $M_{p} \boldsymbol{U}_{p}=\sum_{c \in \mathcal{C}(p)}\left[P_{h}^{c}\left(\boldsymbol{X}_{p}, t\right) I_{p c}^{0} \boldsymbol{n}_{p c}^{0}+\mathrm{M}_{p c}^{0} \boldsymbol{U}_{h}^{c}\left(\boldsymbol{X}_{p}, t\right)\right]$,
where $M_{p}=\sum_{c \in \mathcal{C}(p)} M_{p c}^{0} \quad$ is a positive definite matrix
Face control point velocity

$$
\text { - } M_{q} \boldsymbol{U}_{q}=\mathrm{M}_{q}\left(\frac{Z_{L} \boldsymbol{U}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+Z_{R} \boldsymbol{U}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}}\right)-\frac{P_{h}^{R}\left(\boldsymbol{X}_{q}\right)-P_{h}^{L}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}} I_{q L}^{0} \boldsymbol{L}_{q L}^{0},
$$

$$
\text { where } M_{q}=\frac{1}{Z_{\beta}} M_{q R}^{0}=\frac{1}{Z_{L}} M_{q L}^{0}=\left.\right|_{q L} ^{0} \Lambda_{q L}^{0} \otimes \boldsymbol{n}_{q L}^{0} \text { is positive semi-definite }
$$

1D approximate Riemann problem solution

$$
\text { - }\left(\boldsymbol{U}_{q} \cdot \boldsymbol{n}_{q L}^{0}\right)=\left(\frac{Z_{L} \boldsymbol{U}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+Z_{R} \boldsymbol{U}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}}\right) \cdot \boldsymbol{n}_{q L}^{0}-\frac{P_{h}^{R}\left(\boldsymbol{X}_{q}\right)-P_{h}^{L}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}}
$$

Tangential component of the face control point velocity

$$
\text { - }\left(\boldsymbol{U}_{q} \cdot \boldsymbol{t}_{q L}^{0}\right)=\left(\frac{Z_{L} \boldsymbol{U}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+Z_{R} \boldsymbol{U}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}}\right) \cdot \boldsymbol{t}_{q L}^{0}
$$

Face control point velocity

$$
\text { - } \boldsymbol{U}_{q}=\frac{Z_{L} \boldsymbol{U}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+Z_{R} \boldsymbol{U}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}}-\frac{P_{h}^{R}\left(\boldsymbol{X}_{q}\right)-P_{h}^{L}\left(\boldsymbol{X}_{q}\right)}{Z_{L}+Z_{R}} \boldsymbol{n}_{q L}^{0}
$$

Deformation tensor

$$
\text { - } \frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~F}_{i}=\sum_{Q \in \mathcal{Q}(i)} \boldsymbol{U}_{Q} \otimes \boldsymbol{\nabla}_{X} \wedge_{Q}^{i}
$$

Interior points velocity

$$
\text { - } \boldsymbol{U}_{Q}=\boldsymbol{U}_{h}^{c}\left(\boldsymbol{X}_{Q}, t\right)
$$

Riemann invariants differentials

- $\mathrm{d} \alpha_{t}=\mathrm{d} \boldsymbol{U} \cdot \boldsymbol{t}$
- $\mathrm{d} \alpha_{-}=\mathrm{d}\left(\frac{1}{\rho}\right)-\frac{1}{\rho a} \mathrm{~d} \boldsymbol{U} \cdot \boldsymbol{n}$
- $\mathrm{d} \alpha_{+}=\mathrm{d}\left(\frac{1}{\rho}\right)+\frac{1}{\rho a} \mathrm{~d} \boldsymbol{U} \cdot \boldsymbol{n}$
- $\mathrm{d} \alpha_{E}=\mathrm{d} E-\boldsymbol{U} \cdot \mathrm{d} \boldsymbol{U}+P \mathrm{~d}\left(\frac{1}{\rho}\right)$
a denotes the sound speed

Mean value linearization

$$
\begin{aligned}
& \alpha_{t, h}^{c}=\boldsymbol{U}_{h}^{c} \cdot \boldsymbol{t} \\
& \alpha_{-, h}^{c}=\left(\frac{1}{\rho}\right)_{h}^{c}-\frac{1}{Z_{c}} \boldsymbol{U}_{h}^{c} \cdot \boldsymbol{n} \\
& \alpha_{+, h}^{c}=\left(\frac{1}{\rho}\right)_{h}^{c}+\frac{1}{Z_{c}} \boldsymbol{U}_{h}^{c} \cdot \boldsymbol{n} \\
& \alpha_{E, h}^{c}=E_{h}^{c}-\boldsymbol{U}_{0}^{c} \cdot \boldsymbol{U}_{h}^{c}+P_{0}^{c}\left(\frac{1}{\rho}\right)_{h}^{c} \\
& \quad \text { where } Z_{c}=a_{0}^{c} \rho_{0}^{c}
\end{aligned}
$$

System variables polynomial approximation components

- $\left(\frac{1}{\rho}\right)_{k}^{c}=\frac{1}{2}\left(\alpha_{+, k}^{c}+\alpha_{-, k}^{c}\right)$
- $\boldsymbol{U}_{k}^{c}=\frac{1}{2} Z_{c}\left(\alpha_{+, k}^{c}-\alpha_{-, k}^{c}\right) \boldsymbol{n}+\alpha_{t, k}^{c} \boldsymbol{t}$
- $E_{k}^{c}=\alpha_{E, k}^{c}+\frac{1}{2} Z_{C}\left(\alpha_{+, k}^{c}-\alpha_{-, k}^{c}\right) \boldsymbol{U}_{0}^{c} \cdot \boldsymbol{n}+\alpha_{t, k}^{c} \boldsymbol{U}_{0}^{c} \cdot \boldsymbol{t}-\frac{1}{2} P_{0}^{c}\left(\alpha_{+, k}^{c}+\alpha_{-, k}^{c}\right)$

Unit direction ensuring symmetry preservation

- $\boldsymbol{n}=\frac{\boldsymbol{U}_{0}^{c}}{\left\|\boldsymbol{U}_{0}^{c}\right\|} \quad$ and $\quad \boldsymbol{t}=\boldsymbol{e}_{z} \times \frac{\boldsymbol{U}_{0}^{c}}{\left\|\boldsymbol{U}_{0}^{c}\right\|}$

Composed derivatives

- $\boldsymbol{F}_{T}=\nabla_{X_{r}} \boldsymbol{\Phi}_{T}\left(\boldsymbol{X}_{r}, t\right)$

$$
\begin{aligned}
& =\nabla_{X} \boldsymbol{\Phi}_{H}(\boldsymbol{X}, t) \circ \nabla_{X_{r}} \boldsymbol{\Phi}_{0}\left(\boldsymbol{X}_{r}\right) \\
& =\mathrm{F}_{H} \mathrm{~F}_{0}
\end{aligned}
$$

- $J_{T}\left(\boldsymbol{X}_{r}, t\right)=J_{H}(\boldsymbol{X}, t) J_{0}\left(\boldsymbol{X}_{r}\right)$

Mass conservation

- $\rho^{0} J_{0}=\rho J_{T}$

Modification of the mass matrix

- $\int_{\omega_{c}} \rho \frac{\mathrm{~d} \psi_{h}^{c}}{\mathrm{~d} t} \sigma_{j} \mathrm{~d} \omega=\sum_{k=0}^{K} \frac{\mathrm{~d} \psi_{k}}{\mathrm{~d} t} \int_{\Omega_{c}^{r}} \rho^{0} J_{0} \sigma_{j} \sigma_{k} \mathrm{~d} \Omega^{r} \quad$ time rate of change of successive moments of function ψ
- New definitions of mass matrix, of mass averaged value and of the associated scalar product
(1) Introduction
- Discontinuous Galerkin schemes
- High-order geometries
(2) Cell-Centered Lagrangian schemes
(3) Lagrangian and Eulerian descriptions

4. Discretization

- DG general framework
- Deformation gradient tensor
- Discretization
- Control point solvers
- Limitation
- Initial deformation

(5) Numerical results

- Second-order scheme
- Third-order scheme

6 Conclusion

Sedov point blast problem on a Cartesian grid

Figure: Point blast Sedov problem on a Cartesian grid made of 30×30 cells: density.

Sedov point blast problem on unstructured grids

(a) Polygonal grid.

(b) Triangular grid.

Figure: Unstructured initial grids for the point blast Sedov problem.

Sedov point blast problem a polygonal grid

(a) Second-order scheme.

(b) Density profile.

Figure: Point blast Sedov problem on an unstructured grid made of 775 polygonal cells: density map.

Sedov point blast problem on a triangular grid

Figure: Point blast Sedov problem on an unstructured grid made of 1100 triangular cells: density map.

Noh problem

(a) Second-order scheme.

(b) Density profile.

Figure: Noh problem on a Cartesian grid made of 50×50 cells: density.

Taylor-Green vortex problem, introduced by R. Rieben (LLNL)

(a) Second-order scheme.

(b) Exact solution.

Figure: Motion of a 10×10 Cartesian mesh through a T.-G. vortex, at $t=0.75$.

Taylor-Green vortex problem

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{10}$	$5.06 \mathrm{E}-3$	1.94	$6.16 \mathrm{E}-3$	1.93	$2.20 \mathrm{E}-2$	1.84
$\frac{1}{20}$	$1.32 \mathrm{E}-3$	1.98	$1.62 \mathrm{E}-3$	1.97	$5.91 \mathrm{E}-3$	1.95
$\frac{1}{40}$	$3.33 \mathrm{E}-4$	1.99	$4.12 \mathrm{E}-4$	1.99	$1.53 \mathrm{E}-3$	1.98
$\frac{1}{80}$	$8.35 \mathrm{E}-5$	2.00	$1.04 \mathrm{E}-4$	2.00	$3.86 \mathrm{E}-4$	1.99
$\frac{1}{160}$	$2.09 \mathrm{E}-5$	-	$2.60 \mathrm{E}-5$	-	$9.69 \mathrm{E}-5$	-

Table: Rate of convergence computed on the pressure at time $t=0.1$.
(1) Introduction

- Discontinuous Galerkin schemes
- High-order geometries
(2) Cell-Centered Lagrangian schemes
(3) Lagrangian and Eulerian descriptions

4. Discretization

- DG general framework
- Deformation gradient tensor
- Discretization
- Control point solvers
- Limitation
- Initial deformation

(5) Numerical results

- Second-order scheme
- Third-order scheme

6 Conclusion

Polar grids

(a) Non-uniform grid.

(b) One angular cell grid.

Figure: Polar initial grids for the Sod shock tube problem.

Symmetry preservation

(a) First-order scheme.

(b) Second-order scheme.

Figure: Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

Symmetry preservation

(a) Density map.

(b) Density profile.

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

One angular cell polar Sod shock tube problem

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×1 cells.

Variant of the incompressible Gresho vortex problem

(a) First-order scheme.

(b) Second-order scheme.

Figure: Motion of a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$: zoom on the zone $(r, \theta) \in[0,0.5] \times[0,2 \pi]$.

Variant of the incompressible Gresho vortex problem

(a) Third-order scheme.

(b) Exact solution.

Figure: Motion of a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$: zoom on the zone $(r, \theta) \in[0,0.5] \times[0,2 \pi]$.

Variant of the Gresho vortex problem

(a) Pressure profile.

(b) Velocity profile.

Figure: Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$.

Variant of the Gresho vortex problem

Figure: Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$: density profile.

Kidder isentropic compression

Figure: Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells: pressure map.

Kidder isentropic compression

Figure: Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells: density profile.

Taylor-Green vortex problem

(a) Third-order scheme.

(b) Exact solution.

Figure: Motion of a 10×10 Cartesian mesh through a T.-G. vortex, at $t=0.75$.

Taylor-Green vortex problem

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{10}$	$2.67 \mathrm{E}-4$	2.96	$3.36 \mathrm{E}-4$	2.94	$1.21 \mathrm{E}-3$	2.86
$\frac{1}{20}$	$3.43 \mathrm{E}-5$	2.97	$4.36 \mathrm{E}-5$	2.96	$1.66 \mathrm{E}-4$	2.93
$\frac{1}{40}$	$4.37 \mathrm{E}-6$	2.99	$5.59 \mathrm{E}-6$	2.98	$2.18 \mathrm{E}-5$	2.96
$\frac{1}{80}$	$5.50 \mathrm{E}-7$	2.99	$7.06 \mathrm{E}-7$	2.99	$2.80 \mathrm{E}-6$	2.99
$\frac{1}{160}$	$6.91 \mathrm{E}-8$	-	$8.87 \mathrm{E}-8$	-	$3.53 \mathrm{E}-7$	-

Table: Rate of convergence computed on the pressure at time $t=0.1$.

Taylor-Green vortex problem

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
600	24×25	$2.67 \mathrm{E}-2$	$3.31 \mathrm{E}-2$	$8.55 \mathrm{E}-2$	2.01
2400	48×50	$1.36 \mathrm{E}-2$	$1.69 \mathrm{E}-2$	$4.37 \mathrm{E}-2$	11.0

Table: First-order DG scheme at time $t=0.1$.

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
630	14×15	$2.76 \mathrm{E}-3$	$3.33 \mathrm{E}-3$	$1.07 \mathrm{E}-2$	2.77
2436	28×29	$7.52 \mathrm{E}-4$	$9.02 \mathrm{E}-4$	$2.73 \mathrm{E}-3$	11.3

Table: Second-order DG scheme without limitation at time $t=0.1$.

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
600	10×10	$2.67 \mathrm{E}-4$	$3.36 \mathrm{E}-4$	$1.21 \mathrm{E}-3$	4.00
2400	20×20	$3.43 \mathrm{E}-5$	$4.36 \mathrm{E}-5$	$1.66 \mathrm{E}-4$	30.6

Table: Third-order DG scheme without limitation at time $t=0.1$.

Sedov point blast problem on a Cartesian grid

Figure: Point blast Sedov problem on a Cartesian grid made of 30×30 cells: density.

(9) Introduction

(2) Cell-Centered Lagrangian schemes
(3) Lagrangian and Eulerian descriptions

4 Discretization
(5) Numerical results
(6) Conclusion

Conclusions

- Development of 2nd and 3rd order DG schemes for the 2D gas dynamics system in a total Lagrangian formalism
- GCL and Piola compatibility condition ensured by construction
- Dramatic improvement of symmetry preservation by means of third-order DG scheme
- Riemann invariants limitation

Perspectives

- High-order limitation
- Positivity preserving limitation
- WENO limiter
- Code parallelization
- Development of a 3rd order DG scheme on moving mesh
- Extension to 3D
- Extension to ALE and solid dynamics

圊 F. VILAR, P.-H. MaIRE AND R. Abgrall, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2010.
(R. VILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2012.

围 F. Vilar, P.-H. Maire and R. Abgrall, Third order Cell-Centered DG scheme for Lagrangian hydrodynamics on general unstructured Bezier grids. Article in preparation.

