High-order cell-centered discontinuous Galerkin scheme for Lagrangian hydrodynamics

François Vilar

Brown University, Division of Applied Mathematics
182 George Street, Providence, RI 02912

May 4th, 2015

(1) Introduction

2 Eulerian and Lagrangian descriptions
(3) Two-dimensional discretization

4 Numerical results
(5) Conclusion

Eulerian formalism (spatial description)

- Fixed referential attached to the observer
- Fixed observation area in which the fluid flows through

Lagrangian formalism (material description)

- Moving referential attached to the material
- Observation area getting moved and deformed through the fluid flow

Advantages of the Lagrangian formalism

- Adapted to the study of regions undergoing large shape changes
- Naturally tracks interfaces in multimaterial compressible flows
- No numerical diffusion from the discretization of the convection terms

Disadvantages of the Lagrangian formalism

- Robustness issue in cases of shear flows or vortexes
\Longrightarrow ALE (Arbitrary Lagrangian-Eulerian) method

(1) Introduction

(2) Eulerian and Lagrangian descriptions
(3) Two-dimensional discretization

4 Numerical results
(5) Conclusion

Definitions

- ρ is the fluid density
- $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)^{\mathrm{t}}$ is the fluid velocity
- e is the fluid specific total energy
- p is the fluid pressure
- $\varepsilon=\boldsymbol{e}-\frac{1}{2} \boldsymbol{u}^{2}$ is the fluid specific internal energy

Euler equations

$$
\begin{aligned}
& \text { - } \frac{\partial \rho}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u})=0 \\
& -\frac{\partial \rho \boldsymbol{u}}{\partial t}+\nabla_{x} \cdot\left(\rho \boldsymbol{u} \otimes \boldsymbol{u}+p{I_{d}}\right)=\mathbf{0} \\
& -\frac{\partial \rho \boldsymbol{e}}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u} \boldsymbol{e}+p \boldsymbol{u})=0
\end{aligned}
$$

Continuity equation

Momentum conservation equation

Total energy conservation equation

Thermodynamical closure

- $p=p(\rho, \varepsilon)$

Equation of state (EOS)

Momentum equation

- $\frac{\partial \rho \boldsymbol{u}}{\partial t}+\nabla_{x} \cdot\left(\rho \boldsymbol{u} \otimes \boldsymbol{u}+p \mathbf{l}_{d}\right)=\mathbf{0}$
- $\rho\left(\frac{\partial \boldsymbol{u}}{\partial t}+\left(\nabla_{x} \boldsymbol{u}\right) \boldsymbol{u}\right)+\boldsymbol{u}(\underbrace{\frac{\partial \rho}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u})}_{=0})+\nabla_{x} \boldsymbol{p}=0$
- $\rho\left(\frac{\partial u_{i}}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} u_{i}\right)+\nabla_{x} \cdot(p \mathbb{1}(i))=0$
- $\mathbb{1}(i)=\left(\delta_{i 1}, \delta_{i 2}, \delta_{i 3}\right)^{\mathrm{t}}$

Total energy equation

- $\frac{\partial \rho \boldsymbol{e}}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u} \boldsymbol{e}+p \boldsymbol{u})=0$
- $\rho\left(\frac{\partial \boldsymbol{e}}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} \boldsymbol{e}\right)+\boldsymbol{e}(\underbrace{\frac{\partial \rho}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u})}_{=0})+\nabla_{x} \cdot(p \boldsymbol{u})=0$
- $\rho\left(\frac{\partial \boldsymbol{e}}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} e\right)+\nabla_{x} \cdot(p \boldsymbol{u})=0$

Definitions

- $\tau=\frac{1}{\rho} \quad$ is the specific volume
- $\mathrm{U}=\left(\tau, u_{1}, u_{2}, u_{3}, e\right)^{\mathrm{t}}$ is the variables vector
- $F(U)=(-\boldsymbol{u}, p \mathbb{1}(1), p \mathbb{1}(2), p \mathbb{1}(3), p \boldsymbol{u})^{\mathrm{t}} \quad$ is the flux vector

Continuity equation

- $\frac{\partial \rho}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u})=0$
- $\frac{\partial \rho}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} \rho+\rho \nabla_{x} \cdot \boldsymbol{u}=0$
- $\rho\left(\frac{\partial \tau}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} \tau\right)-\nabla_{x} \cdot \boldsymbol{u}=0$

Gas dynamics equations

$$
\text { - } \rho\left(\frac{\partial \mathrm{U}}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} \mathrm{U}\right)+\nabla_{x} \cdot \mathrm{~F}(\mathrm{U})=0
$$

Flow transformation of the fluid

- The fluid flow is described mathematically by the continuous transformation, $\boldsymbol{\Phi}$, so-called mapping such as $\boldsymbol{\Phi}: \boldsymbol{X} \longrightarrow \boldsymbol{X}=\boldsymbol{\Phi}(\boldsymbol{X}, t)$

Figure: Notation for the flow map.
where \boldsymbol{X} is the Lagrangian (initial) coordinate, \boldsymbol{x} the Eulerian (actual) coordinate, \boldsymbol{N} the Lagrangian normal and \boldsymbol{n} the Eulerian normal

Flow map Jacobian matrix: deformation gradient tensor

- $\mathbf{J}=\nabla_{x} \Phi=\nabla_{x} \boldsymbol{X} \quad$ and $\quad|\mathbf{J}|=\operatorname{det} \mathbf{J}>0$

Trajectory equation

- $\frac{\partial \boldsymbol{x}(\boldsymbol{X}, t)}{\partial t}=\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{X}, t), t)$
- $\boldsymbol{x}(\boldsymbol{X}, 0)=\boldsymbol{X}$

Material time derivative

- $\varphi(\boldsymbol{x}, t)$ is a fluid variable with sufficient smoothness

$$
\text { - } \frac{\mathrm{d} \varphi}{\mathrm{~d} t} \equiv \frac{\partial \varphi(\boldsymbol{x}(\boldsymbol{X}, t), t)}{\partial t}=\frac{\partial \varphi}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} \varphi
$$

Updated Lagrangian formulation

$$
\rho \frac{\mathrm{d} U}{\mathrm{~d} t}+\nabla_{x} \cdot \mathrm{~F}(\mathrm{U})=0
$$

Moving configuration

Integral conservative form

$$
\frac{\partial}{\partial t} \int_{\omega} \rho \mathrm{U} \mathrm{~d} \boldsymbol{v}+\int_{\partial \omega} \mathrm{F}(\mathrm{U}) \cdot \boldsymbol{n} \mathrm{d} s=0
$$

Moving configuration

Transformation formulas

- $\mathrm{J} \mathrm{d} \boldsymbol{X}=\mathrm{d} \boldsymbol{x}$
- $|\mathrm{J}| \mathrm{d} V=\mathrm{d} v$
- $|\mathrm{J}| \mathrm{J}^{-t} \boldsymbol{N} \mathrm{~d} S \equiv \mathrm{~J}^{\star} \boldsymbol{N} \mathrm{d} \boldsymbol{S}=\boldsymbol{n} \mathrm{d} \boldsymbol{s}$

Change of shape of infinitesimal vectors Measure of the volume change Nanson formula

Mass conservation

- $\rho^{0}(\boldsymbol{X})$ is the initial fluid density
- $\int_{\Omega} \rho^{0} \mathrm{~d} V=\int_{\omega} \rho \mathrm{d} v$
- $\int_{\omega} \rho \mathrm{d} V=\int_{\Omega} \rho|\mathrm{J}| \mathrm{d} V$
- $\rho|\mathrm{J}|=\rho^{0}$

Mass integral relation

- $\frac{\partial}{\partial t} \int_{\omega} \rho \varphi \mathrm{d} v=\frac{\partial}{\partial t} \int_{\Omega} \rho|\mathrm{J}| \varphi \mathrm{d} V=\int_{\Omega} \rho|\mathrm{J}| \frac{\partial \varphi}{\partial t} \mathrm{~d} V$
- $\frac{\partial}{\partial t} \int_{\omega} \rho \varphi \mathrm{d} v=\int_{\omega} \rho \frac{\mathrm{d} \varphi}{\mathrm{d} t} \mathrm{~d} v$

Differential operators transformations

- $\phi(\boldsymbol{x}, t)$ is a fluid vector valued variable with sufficient smoothness
- $\nabla_{X} \cdot \phi=\frac{1}{|J|} \nabla_{X} \cdot\left(J^{\star^{t}} \phi\right)$

Piola compatibility condition

$$
\text { - } \nabla_{X} \cdot \mathrm{~J}^{\star}=\mathbf{0} \quad \Longrightarrow \quad \int_{\Omega} \nabla_{x} \cdot \mathrm{~J}^{\star} \mathrm{d} \boldsymbol{V}=\int_{\partial \Omega} \mathrm{J}^{\star} \boldsymbol{N} \mathrm{d} S=\int_{\partial \omega} \boldsymbol{n} \mathrm{d} \boldsymbol{s}=\mathbf{0}
$$

Total Lagrangian formulation

$$
\begin{aligned}
& \text { - } \frac{\partial \mathrm{J}}{\partial t}-\nabla_{X} \boldsymbol{u}=0 \\
& \text { - } \rho^{0} \frac{\partial \mathrm{U}}{\partial t}+\nabla_{X} \cdot\left(\mathrm{~J}^{\star^{t}} \mathrm{~F}(\mathrm{U})\right)=0
\end{aligned}
$$

Deformation gradient tensor
Fixed configuration
Integral conservative form

$$
\text { - } \frac{\partial}{\partial t} \int_{\Omega} \rho^{0} U \mathrm{~d} V+\int_{\partial \Omega} \mathrm{F}(\mathrm{U}) \cdot \mathrm{J}^{\star} \boldsymbol{N} \mathrm{d} S=0
$$

Fixed configuration
(2) Eulerian and Lagrangian descriptions
(3) Two-dimensional discretization

4 Numerical results
(5) Conclusion

$(s+1)^{\text {th }}$ order DG discretization

- $\left\{\Omega_{c}\right\}_{c}$ a partition of the domain Ω into polygonal cells
- $\left\{\sigma_{k}^{c}\right\}_{k=0 \ldots k}$ basis of $\mathbb{P}^{s}\left(\Omega_{c}\right)$, where $K+1=\frac{(s+1)(s+2)}{2}$
- $\phi_{h}^{c}(\boldsymbol{X}, t)=\sum_{k=0}^{K} \phi_{k}^{c}(t) \sigma_{k}^{c}(\boldsymbol{X}) \quad$ approximate function of $\phi(\boldsymbol{X}, t)$ on Ω_{c}

Definitions

- m_{c} constant mass of cell Ω_{c}
- $\mathcal{X}_{c}=\left(\mathcal{X}_{c}, \mathcal{Y}_{c}\right)^{\mathrm{t}}=\frac{1}{m_{c}} \int_{\Omega_{c}} \rho^{0}(\boldsymbol{X}) \boldsymbol{X} \mathrm{d} V \quad$ center of mass of cell Ω_{c}
- $\langle\phi\rangle_{c}=\frac{1}{m_{c}} \int_{\Omega_{c}} \rho^{0}(\boldsymbol{X}) \phi(\boldsymbol{X}) \mathrm{d} V$ mean value of function ϕ over Ω_{c}
- $(\phi \cdot \psi)_{c}=\int_{\Omega_{c}} \rho^{0}(\boldsymbol{X}) \phi(\boldsymbol{X}) \psi(\boldsymbol{X}) \mathrm{d} V$ associated scalar product

Taylor expansion on the cell, located at the center of mass

$\phi(\boldsymbol{X})=\phi\left(\mathcal{X}_{c}\right)+\sum_{k=1}^{s} \sum_{j=0}^{k} \frac{\left(X-\mathcal{X}_{c}\right)^{k-j}\left(Y-\mathcal{Y}_{c}\right)^{j}}{j!(k-j)!} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}}\left(\mathcal{X}_{c}\right)+o\left(\left\|\boldsymbol{X}-\mathcal{X}_{c}\right\|^{s}\right)$
$(s+1)^{\text {th }}$ order scheme polynomial Taylor basis

- The first-order polynomial component and the associated basis function

$$
\phi_{0}^{c}=\langle\phi\rangle_{c} \quad \text { and } \quad \sigma_{0}^{c}=1
$$

- The $k^{\text {th }}$-order polynomial components and the associated basis functions

$$
\begin{gathered}
\phi_{\frac{K(k+1)}{c}+j}^{c}=\left(\Delta X_{c}\right)^{k-j}\left(\Delta Y_{c}\right)^{j} \frac{\partial^{k} \phi}{\partial X^{k-j \partial Y^{j}}}\left(\mathcal{X}_{c}\right), \\
\sigma_{\frac{K(k+1)}{c}+j}^{c}=\frac{1}{j!(k-j)!}\left[\left(\frac{x-\mathcal{X}_{c}}{\Delta X_{c}}\right)^{k-j}\left(\frac{Y-\mathcal{Y}_{c}}{\Delta Y_{c}}\right)^{j}-\left\langle\left(\frac{X-\mathcal{X}_{c}}{\Delta X_{c}}\right)^{k-j}\left(\frac{Y-\mathcal{Y}_{c}}{\Delta Y_{c}}\right)^{j}\right\rangle_{c}\right],
\end{gathered}
$$

$$
\text { where } 0<k \leq s, j=0 \ldots k, \Delta X_{c}=\frac{X_{\max }-X_{\min }}{2} \text { and } \Delta Y_{c}=\frac{Y_{\max }-Y_{\min }}{2}
$$

園 H. Luo, J. D. Baum and R. Löhner, A DG method based on a Taylor basis for the compressible flows on arbitrary grids. J. Comp. Phys., 2008.

Outcome

- First moment associated to the basis function $\sigma_{0}^{c}=1$ is the mass averaged value

$$
\phi_{0}^{c}=\langle\phi\rangle_{c}
$$

- The successive moments can be identified as the successive derivatives of the function expressed at the center of mass of the cell

$$
\phi_{\frac{k(k+1)}{c}+j}^{c}=\left(\Delta X_{c}\right)^{k-j}\left(\Delta Y_{c}\right)^{j} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}}\left(\mathcal{X}_{c}\right)
$$

- The first basis function is orthogonal to the other ones

$$
\left(\sigma_{0}^{c} \cdot \sigma_{k}^{c}\right)_{c}=m_{c} \delta_{0 k}
$$

- Same basis functions regardless the shape of the cells (squares, triangles, generic polygonal cells)

Total Lagrangian gas dynamics system

$$
\text { - } \rho^{0} \frac{\partial U}{\partial t}+\nabla_{x} \cdot\left(J^{t^{\prime}} F(U)\right)=0
$$

Local variational formulations

$$
\text { - } \begin{aligned}
\int_{\Omega_{c}} \rho^{0} \frac{\partial \mathrm{U}_{h}^{c}}{\partial t} \sigma_{j}^{c} \mathrm{~d} V & =\sum_{k=0}^{K} \frac{\partial \mathrm{U}_{k}^{c}}{\partial t} \int_{\Omega_{c}} \rho^{0} \sigma_{j}^{c} \sigma_{k}^{c} \mathrm{~d} V \\
& =\int_{\Omega_{c}} \mathrm{~F}\left(\mathrm{U}_{h}^{c}\right) \cdot \mathrm{J}^{\star} \nabla_{\chi} \sigma_{j}^{c} \mathrm{~d} V-\int_{\partial \Omega_{c}} \overline{F(U)} \cdot \sigma_{j}^{c} \mathrm{~J}^{\star} N \mathrm{~d} S
\end{aligned}
$$

- $\bar{F}(U)=(-\bar{u}, \mathbb{1}(1) \bar{p}, \mathbb{1}(2) \bar{p}, \bar{p} \overline{\boldsymbol{u}})^{t} \quad$ is the numerical flux

Geometric Conservation Law (GCL)

- $\frac{\partial\left|\omega_{c}\right|}{\partial t} \equiv \frac{\partial}{\partial t} \int_{\omega_{c}} \mathrm{~d} V=\frac{\partial}{\partial t} \int_{\Omega_{c}}|\mathrm{~J}| \mathrm{d} V=\int_{\Omega_{c}} \rho \frac{\partial \tau_{h}^{c}}{\partial t} \mathrm{~d} V$
- $\int_{\Omega_{c}} \rho^{0} \frac{\partial \tau_{h}^{c}}{\partial t} \mathrm{~d} V=\int_{\partial \Omega_{c}} \bar{u} \cdot \mathrm{~J}^{\star} \boldsymbol{N} \mathrm{d} S$

Mass matrix properties

- $\int_{\Omega_{c}} \rho^{0} \sigma_{j}^{c} \sigma_{k}^{c} \mathrm{~d} V=\left(\sigma_{j}^{c} \cdot \sigma_{k}^{c}\right)_{c} \quad$ generic coefficient of the symmetric positive definite mass matrix
- $\left(\sigma_{0}^{c} \cdot \sigma_{k}^{c}\right)_{c}=m_{c} \delta_{0 k}$ mass averaged equation is independent of the other polynomial basis components equations

Interior terms

- $\int_{\Omega_{c}} \mathrm{~F}\left(\mathrm{U}_{h}^{c}\right) \cdot \mathrm{J}^{\star} \nabla_{x} \sigma_{j}^{c} \mathrm{~d} V$ is evaluated through the use of a two-dimensional high-order quadrature rule

Boundary terms

- $\int_{\partial \Omega_{c}} \overline{F(U)} \cdot \sigma_{j}^{c} \mathrm{~J}^{\star} \boldsymbol{N} \mathrm{d} S$ required a specific treatment to ensure the GCL
- It remains to determine the numerical fluxes

Requirements

- Consistency of vector $\mathrm{J}^{\star} \boldsymbol{N} \mathrm{d} S=\boldsymbol{n d} \boldsymbol{s}$ at the interfaces of the cells
- Continuity of vector $\mathbf{J}^{\star} \boldsymbol{N}$ at cell interfaces on both sides of the interface
- Preservation of uniform flows, $\mathrm{J}^{\star}=|\mathrm{J}| \mathrm{J}^{-t}$ the cofactor matrix

$$
\int_{\Omega_{c}} \mathrm{~J}^{\star} \nabla_{\chi} \sigma_{j}^{c} \mathrm{~d} V=\int_{\partial \Omega_{c}} \sigma_{j}^{c} \mathrm{~J}^{\star} \mathbf{N} \mathrm{d} S \Longleftrightarrow \int_{\Omega_{c}} \sigma_{j}^{c}\left(\nabla_{X} \cdot \mathrm{~J}^{\star}\right) \mathrm{d} V=\mathbf{0}
$$

Generalization of the weak form of the Piola compatibility condition

Tensor J discretization

- Discretization of tensor J by means of a mapping defined on triangular cells
- Partition of the polygonal cells in the initial configuration into non-overlapping triangles

$$
\Omega_{c}=\bigcup_{i=1}^{n t r i} \mathcal{T}_{i}^{c}
$$

$(s+1)^{\text {th }}$ order continuous mapping function

- We develop Φ on the Finite Elements basis functions \wedge_{q}^{i} in \mathcal{T}_{i} of degree s

$$
\boldsymbol{\Phi}_{h}^{i}(\boldsymbol{X}, t)=\sum_{q \in \mathcal{Q}(i)} \Lambda_{q}^{i}(\boldsymbol{X}) \boldsymbol{\Phi}_{q}(t),
$$

where $\mathcal{Q}(i)$ is the \mathcal{T}_{i} control points set, including the vertices $\left\{p^{-}, p, p^{+}\right\}$

- $\boldsymbol{\Phi}_{q}(t)=\boldsymbol{\Phi}\left(\boldsymbol{X}_{q}, t\right)=\boldsymbol{x}_{q}$
- $\frac{\partial \boldsymbol{\Phi}_{q}}{\partial t}=\overline{\boldsymbol{u}}_{q} \quad \Longrightarrow \quad \frac{\partial}{\partial t} J_{i}(\boldsymbol{X}, t)=\sum_{q \in \mathcal{Q}(i)} \overline{\boldsymbol{u}}_{q}(t) \otimes \nabla_{x} \wedge_{q}^{i}(\boldsymbol{X})$

Outcome

- Satisfaction of the Piola compatibility condition everywhere
- Consistency and continuity of the Eulerian normal $\mathrm{J}^{\star} \boldsymbol{N}$

Example of the fluid flow mapping in the fourth order case

Figure : Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using $s+1$ control points

- Projection of the continuous mapping function Φ on the face $f_{p p^{+}}$

$$
\boldsymbol{x}_{\left.\right|_{p p^{+}}}(\zeta)=\boldsymbol{x}_{p} \lambda_{p}(\zeta)+\sum_{q \in \mathcal{Q}\left(p p^{+}\right) \backslash\left\{p, p^{+}\right\}} \boldsymbol{x}_{q} \lambda_{q}(\zeta)+\boldsymbol{x}_{p^{+}} \lambda_{p^{+}}(\zeta),
$$

where $\mathcal{Q}\left(p p^{+}\right)$is the face control points set, $\zeta \in[0,1]$ the curvilinear abscissa and λ_{q} the 1D Finite Element basis functions of degree s

Local variational formulations

$$
\begin{aligned}
\int_{\Omega_{c}} \rho^{0} \frac{\partial \mathrm{U}_{h}^{c}}{\partial t} \sigma_{j}^{c} \mathrm{~d} V & =\sum_{i=1}^{n t r i} \int_{\mathcal{T}_{i}^{c}} \mathrm{~F}\left(\mathrm{U}_{h}^{c}\right) \cdot \mathrm{J}^{\star} \nabla_{x} \sigma_{j}^{c} \mathrm{~d} V \\
& -\sum_{p \in \mathcal{P}(c)} \int_{p}^{p^{+}} \overline{\mathrm{F}(\mathrm{U})} \cdot \sigma_{j}^{c} \mathrm{~J}^{\star} \boldsymbol{N} \mathrm{d} L
\end{aligned}
$$

Polynomial assumptions on face $f_{p p^{+}}$

$$
\text { - }{\overline{\mathrm{F}}(\mathrm{U})_{l p p^{+}}}(\zeta)=\overline{\mathrm{F}}_{p c}^{+} \lambda_{p}(\zeta)+\sum_{q \backslash\left\{p, p^{+}\right\}} \overline{\mathrm{F}}_{q c} \lambda_{q}(\zeta)+\overline{\mathrm{F}}_{p^{+} c}^{-} \lambda_{p^{+}}(\zeta)
$$

Polynomial properties on face $f_{p p^{+}}$

$$
\begin{aligned}
& \text { - } \mathrm{J}^{\star} \boldsymbol{N} \mathrm{d} L_{l p p^{\prime}}(\zeta)=\left.\boldsymbol{n} \mathrm{d}\right|_{l p p^{+}}=\frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d} \zeta_{\text {lpp}}+\boldsymbol{e}_{z}=\sum_{q} \frac{\partial \lambda \lambda_{q}}{\partial \zeta}(\zeta)\left(\boldsymbol{x}_{q} \times \boldsymbol{e}_{z}\right) \\
& \text { - } \sigma_{j \mid \rho_{p+}}^{c}(\zeta)=\sigma_{j}^{c}\left(\boldsymbol{X}_{p}\right) \lambda_{p}(\zeta)+\sum_{q\left\{\left\{p, p^{+}\right\}\right.} \sigma_{j}^{c}\left(\boldsymbol{X}_{q}\right) \lambda_{q}(\zeta)+\sigma_{j}^{c}\left(\boldsymbol{X}_{p^{+}}\right) \lambda_{\rho^{+}}(\zeta)
\end{aligned}
$$

Fundamental assumptions

- $\bar{u}_{p c}^{ \pm}=\bar{u}_{p}, \quad \forall c \in \mathcal{C}(p) \quad$ and $\quad \bar{u}_{q L}=\bar{u}_{q R}=\bar{u}_{q}$

Procedure

- Analytical integration + index permutation

Weighted corner normals

- $l_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j}=\int_{p}^{p^{+}} \lambda_{p} \sigma_{j} \mathrm{~J}^{\star} \boldsymbol{N} \mathrm{d} S$
- $I_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}=\int_{p^{-}}^{p} \lambda_{p} \sigma_{j} \mathrm{~J}^{\star} \boldsymbol{N} \mathrm{d} S$
- $l_{p c}^{j} \boldsymbol{n}_{p c}^{j}=l_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}+l_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j}$

Weighted face control point normals

- $l_{q C}^{j} \boldsymbol{n}_{q C}^{j}=\int_{p}^{p^{+}} \lambda_{q} \sigma_{j} \mathbf{J}^{\star} \boldsymbol{N} \mathrm{d} S$

Semi-discrete equations GCL compatible

$$
\begin{aligned}
\bullet \int_{\Omega_{c}} \rho^{0} \frac{\partial \mathrm{U}_{h}^{c}}{\partial t} \sigma_{j}^{c} \mathrm{~d} V= & -\sum_{i=1}^{n t r i} \int_{\mathcal{T}_{i}^{c}} \mathrm{~F}\left(\mathrm{U}_{h}^{c}\right) \cdot \mathrm{J}^{\star} \nabla_{x} \sigma_{j}^{c} \mathrm{~d} V \\
& +\sum_{p \in \mathcal{P}(c)}\left[\left(\overline{\mathrm{F}}_{p c}^{-} \cdot I_{p c}^{-, j} \boldsymbol{n}_{p c}^{-, j}+\overline{\mathrm{F}}_{p c}^{+} \cdot I_{p c}^{+, j} \boldsymbol{n}_{p c}^{+, j}\right)+\sum_{q \backslash\left\{p, p^{+}\right\}} \overline{\mathrm{F}}_{q c} \cdot \cdot_{q c}^{j} \boldsymbol{n}_{q c}^{j}\right]
\end{aligned}
$$

Entropic semi-discrete production

- $T \mathrm{~d} S \equiv \mathrm{~d} \varepsilon+p \mathrm{~d} \tau=\mathrm{d} \boldsymbol{e}-\boldsymbol{u} \cdot \mathrm{d} \boldsymbol{u}+p \mathrm{~d} \tau \quad$ Gibbs identity
- Combining the different variational formulations leads to

$$
\int_{\Omega_{c}} \rho^{0} T \frac{\partial S}{\partial t} \mathrm{~d} V=\int_{\partial \Omega_{c}}\left(\bar{p}-p_{h}^{c}\right)\left(\boldsymbol{u}_{h}^{c}-\overline{\boldsymbol{u}}\right) \cdot \mathrm{J}^{\star} \boldsymbol{N} \mathrm{d} S
$$

- A sufficient condition to satisfy $\int_{\Omega_{c}} \rho^{0} T \frac{\partial S}{\partial t} \mathrm{~d} V \geq 0$ is

$$
\bar{p}-p_{h}^{c}=-\tilde{z}\left(\overline{\boldsymbol{u}}-\boldsymbol{u}_{h}^{c}\right) \cdot \frac{\mathbf{J}^{\star} \boldsymbol{N}}{\left\|\mathbf{J}^{\star} \boldsymbol{N}\right\|}=-\tilde{z}\left(\overline{\boldsymbol{u}}-\boldsymbol{u}_{h}^{c}\right) \cdot \boldsymbol{n}
$$

- $\tilde{z} \geq 0$ is a local approximation of the acoustic impedance $z=\rho$ a

Node cell set

Face point cell set

Conservation + no boundary condition

- $\sum_{c} \int_{\Omega_{c}} \rho^{0} \frac{\partial \mathrm{U}_{h}^{c}}{\partial t} \mathrm{~d} V=0$

Sufficient conditions

- $\sum_{c \in \mathcal{C}(p)}\left(\bar{p}_{p c}^{-} I_{p c}^{-, 0} \boldsymbol{n}_{p c}^{-, 0}+\bar{p}_{p c}^{+} I_{p c}^{+, 0} \boldsymbol{n}_{p c}^{+, 0}\right)=\mathbf{0}$
- $\bar{p}_{q L} I_{q L}^{0} \boldsymbol{n}_{q L}^{0}+\bar{p}_{q R} I_{q R}^{0} \boldsymbol{n}_{q R}^{0}=\mathbf{0}$

Node condition

Face condition

Nodal velocity

- $\sum_{c \in \mathcal{C}(p)}\left[\left.p_{h}^{c}\left(\boldsymbol{X}_{p}\right)\right|_{p c} ^{0} \boldsymbol{n}_{p c}^{0}-\mathrm{M}_{p c}\left(\overline{\boldsymbol{u}}_{p}-\boldsymbol{u}_{h}^{c}\left(\boldsymbol{X}_{p}\right)\right)\right]=\mathbf{0}$
- $\mathrm{M}_{p c}=\widetilde{z}_{p c}^{-} I_{p c}^{-, 0}\left(\boldsymbol{n}_{p c}^{-, 0} \otimes \boldsymbol{n}_{p c}^{-, 0}\right)+\widetilde{z}_{p c}^{+} I_{p c}^{+, 0}\left(\boldsymbol{n}_{p c}^{+, 0} \otimes \boldsymbol{n}_{p c}^{+, 0}\right)$
- $\left(\sum_{c \in \mathcal{C}(p)} \mathrm{M}_{p c}\right) \overline{\boldsymbol{u}}_{p}=\sum_{c \in \mathcal{C}(p)}\left[\mathrm{M}_{p c} \boldsymbol{u}_{h}^{c}\left(\boldsymbol{X}_{p}\right)+p_{h}^{c}\left(\boldsymbol{X}_{p}\right) l_{p c}^{0} \boldsymbol{n}_{p c}^{0}\right]$

Face control point velocity

- $\left(p_{h}^{L}\left(\boldsymbol{X}_{p}\right)-p_{h}^{R}\left(\boldsymbol{X}_{q}\right)\right) I_{q L}^{0} n_{q L}^{0}-\mathrm{M}_{q L}\left(\overline{\boldsymbol{u}}_{q}-\boldsymbol{u}_{h}^{L}\left(\boldsymbol{X}_{q}\right)\right)-\mathrm{M}_{q R}\left(\overline{\boldsymbol{u}}_{q}-\boldsymbol{u}_{h}^{R}\left(\boldsymbol{X}_{q}\right)\right)=\mathbf{0}$
- $\mathrm{M}_{q c}=\widetilde{z}_{q c} \mathrm{M}_{q}=\tilde{z}_{q c}\left(l_{q L}^{0} \boldsymbol{n}_{q L}^{0} \otimes \boldsymbol{n}_{q L}^{0}\right)$
- $\mathrm{M}_{q} \overline{\boldsymbol{u}}_{q}=\mathrm{M}_{q}\left(\frac{\widetilde{z}_{q L} \boldsymbol{u}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+\widetilde{z}_{q R} \boldsymbol{u}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}}\right)-\frac{p_{h}^{R}\left(\boldsymbol{X}_{q}\right)-p_{h}^{L}\left(\boldsymbol{X}_{q}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}} \rho_{q L}^{0} \boldsymbol{n}_{q L}^{0}$
- $\left(\overline{\boldsymbol{u}}_{q} \cdot \boldsymbol{n}_{q L}^{0}\right)=\left(\frac{\widetilde{z}_{q L} \boldsymbol{u}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+\widetilde{z}_{q R} \boldsymbol{u}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}}\right) \cdot \boldsymbol{n}_{q L}^{0}-\frac{p_{h}^{R}\left(\boldsymbol{X}_{q}\right)-p_{h}^{L}\left(\boldsymbol{X}_{q}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}}$

Tangential component of the face control point velocity

$$
\left(\overline{\boldsymbol{u}}_{q} \cdot \boldsymbol{t}_{q L}^{0}\right)=\left(\frac{\widetilde{z}_{q L} \boldsymbol{u}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+\widetilde{z}_{q R} \boldsymbol{u}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}}\right) \cdot \boldsymbol{t}_{q L}^{0}
$$

Face control point velocity

$$
\text { - } \overline{\boldsymbol{u}}_{q}=\left(\frac{\widetilde{z}_{q L} \boldsymbol{u}_{h}^{L}\left(\boldsymbol{X}_{q}\right)+\tilde{z}_{q R} \boldsymbol{u}_{h}^{R}\left(\boldsymbol{X}_{q}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}}\right)-\frac{p_{h}^{R}\left(\boldsymbol{X}_{q}\right)-p_{h}^{L}\left(\boldsymbol{X}_{q)}\right)}{\widetilde{z}_{q L}+\widetilde{z}_{q R}} \boldsymbol{n}_{q L}^{0}
$$

Deformation tensor

$$
\text { - } \frac{\partial}{\partial t} J_{i}=\sum_{Q \in \mathcal{Q}(i)} \overline{\boldsymbol{u}}_{Q} \otimes \nabla_{x} \Lambda_{Q}^{i}
$$

Interior points velocity

- $\overline{\boldsymbol{u}}_{Q}=\boldsymbol{u}_{h}^{c}\left(\boldsymbol{X}_{Q}, t\right)$

Composed derivatives

$$
\text { - } \begin{aligned}
\mathrm{J}_{T}\left(\boldsymbol{X}_{r}, t\right) & =\nabla_{X_{r}} \boldsymbol{\Phi}_{T}\left(\boldsymbol{X}_{r}, t\right) \\
& =\nabla_{X} \boldsymbol{\Phi}_{H}(\boldsymbol{X}, t) \circ \nabla_{X_{r}} \boldsymbol{\Phi}_{0}\left(\boldsymbol{X}_{r}\right) \\
& =\mathrm{J}_{H}(\boldsymbol{X}, t) \mathrm{J}_{0}\left(\boldsymbol{X}_{r}\right)
\end{aligned}
$$

- $\left|\mathrm{J}_{T}\left(\boldsymbol{X}_{r}, t\right)\right|=\left|\mathrm{J}_{H}(\boldsymbol{X}, t)\right|\left|\mathrm{J}_{0}\left(\boldsymbol{X}_{r}\right)\right|$

Mass conservation

- $\rho^{0}\left|\mathrm{~J}_{0}\right|=\rho\left|\mathrm{J}_{T}\right|$

Modification of the mass matrix

- $\int_{\omega_{c}} \rho \frac{\partial \psi_{h}^{c}}{\partial t} \sigma_{j} \mathrm{~d} \omega=\sum_{k=0}^{K} \frac{\partial \psi_{k}}{\partial t} \int_{\Omega_{c}^{c}} \rho^{0}\left|J_{0}\right| \sigma_{j} \sigma_{k} \mathrm{~d} \Omega^{r} \quad$ time rate of change of successive moments of function ψ
- New definitions of mass matrix, of mass averaged value and of the associated scalar product
(1) Introduction
- Eulerian and Lagrangian descriptions
(2) Eulerian and Lagrangian descriptions
- Eulerian description
- Lagrangian descriptions
(3) Two-dimensional discretization
- DG general framework
- Deformation gradient tensor
- Discretization
- Control point solvers
- Initial deformation

4 Numerical results

- Second-order scheme
- Third-order scheme
(5) Conclusion

Sedov point blast problem on a Cartesian grid

Figure : Point blast Sedov problem on a Cartesian grid made of 30×30 cells: density.

Sedov point blast problem on unstructured grids

(a) Polygonal grid.

(b) Triangular grid.

Figure : Unstructured initial grids for the point blast Sedov problem.

Sedov point blast problem a polygonal grid

(a) Second-order scheme.

(b) Density profiles.

Figure : Point blast Sedov problem on an unstructured grid made of 775 polygonal cells: density map.

Sedov point blast problem on a triangular grid

Figure : Point blast Sedov problem on an unstructured grid made of 1100 triangular cells: density map.

Noh problem

Figure : Noh problem on a Cartesian grid made of 50×50 cells: density.

Taylor-Green vortex problem

Figure : Motion of a 10×10 Cartesian mesh through a T.-G. vortex, at $t=0.75$.

Taylor-Green vortex problem

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{10}$	$5.06 \mathrm{E}-3$	1.94	$6.16 \mathrm{E}-3$	1.93	$2.20 \mathrm{E}-2$	1.84
$\frac{1}{20}$	$1.32 \mathrm{E}-3$	1.98	$1.62 \mathrm{E}-3$	1.97	$5.91 \mathrm{E}-3$	1.95
$\frac{1}{40}$	$3.33 \mathrm{E}-4$	1.99	$4.12 \mathrm{E}-4$	1.99	$1.53 \mathrm{E}-3$	1.98
$\frac{1}{80}$	$8.35 \mathrm{E}-5$	2.00	$1.04 \mathrm{E}-4$	2.00	$3.86 \mathrm{E}-4$	1.99
$\frac{1}{160}$	$2.09 \mathrm{E}-5$	-	$2.60 \mathrm{E}-5$	-	$9.69 \mathrm{E}-5$	-

Table : Rate of convergence computed on the pressure at time $t=0.1$.
(1) Introduction

- Eulerian and Lagrangian descriptions
(2) Eulerian and Lagrangian descriptions
- Eulerian description
- Lagrangian descriptions
(3) Two-dimensional discretization
- DG general framework
- Deformation gradient tensor
- Discretization
- Control point solvers
- Initial deformation
(4) Numerical results
- Second-order scheme
- Third-order scheme
(5) Conclusion

Polar grids

(a) Non-uniform grid.

(b) One angular cell grid.

Figure : Polar initial grids for the Sod shock tube problem.

Symmetry preservation

(a) First-order scheme.

(b) Second-order scheme.

Figure : Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

Symmetry preservation

Figure : Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

One angular cell polar Sod shock tube problem

Figure : Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×1 cells.

Variant of the incompressible Gresho vortex problem

(a) First-order scheme.

(b) Second-order scheme.

Figure : Motion of a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$: zoom on the zone $(r, \theta) \in[0,0.5] \times[0,2 \pi]$.

Variant of the incompressible Gresho vortex problem

(a) Third-order scheme.

(b) Exact solution.

Figure : Motion of a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$: zoom on the zone $(r, \theta) \in[0,0.5] \times[0,2 \pi]$.

Variant of the Gresho vortex problem

(a) Pressure profiles.

(b) Velocity profiles.

Figure : Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$.

Variant of the Gresho vortex problem

(a) Density profiles.

(b) Angular momentum time evolution.

Figure : Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in[0,1] \times[0,2 \pi]$, with 40×18 cells at $t=1$.

Kidder isentropic compression

(a) First-order solution.

(b) Second-order solution

Figure : First-order and second-order DG solutions for a Kidder isentropic compression problem on a polar grid made of 10×5 cells.

Kidder isentropic compression

Figure : First-order and second-order DG solutions for a Kidder isentropic compression problem on a polar grid made of 10×5 cells: shell radii evolution.

Kidder isentropic compression

(a) Meshes at time $t=0$ and $t=t_{f}$.

(b) Shell radii evolution.

Figure : Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells.

Taylor-Green vortex problem

(a) Third-order scheme.

(b) Exact solution.

Figure : Motion of a 10×10 Cartesian mesh through a T.-G. vortex, at $t=0.75$.

Taylor-Green vortex problem

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{10}$	$2.67 \mathrm{E}-4$	2.96	$3.36 \mathrm{E}-4$	2.94	$1.21 \mathrm{E}-3$	2.86
$\frac{1}{20}$	$3.43 \mathrm{E}-5$	2.97	$4.36 \mathrm{E}-5$	2.96	$1.66 \mathrm{E}-4$	2.93
$\frac{1}{40}$	$4.37 \mathrm{E}-6$	2.99	$5.59 \mathrm{E}-6$	2.98	$2.18 \mathrm{E}-5$	2.96
$\frac{1}{80}$	$5.50 \mathrm{E}-7$	2.99	$7.06 \mathrm{E}-7$	2.99	$2.80 \mathrm{E}-6$	2.99
$\frac{1}{160}$	$6.91 \mathrm{E}-8$	-	$8.87 \mathrm{E}-8$	-	$3.53 \mathrm{E}-7$	-

Table : Rate of convergence computed on the pressure at time $t=0.1$.

Taylor-Green vortex problem

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
600	24×25	$2.67 \mathrm{E}-2$	$3.31 \mathrm{E}-2$	$8.55 \mathrm{E}-2$	2.01
2400	48×50	$1.36 \mathrm{E}-2$	$1.69 \mathrm{E}-2$	$4.37 \mathrm{E}-2$	11.0

Table : First-order DG scheme at time $t=0.1$.

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
630	14×15	$2.76 \mathrm{E}-3$	$3.33 \mathrm{E}-3$	$1.07 \mathrm{E}-2$	2.77
2436	28×29	$7.52 \mathrm{E}-4$	$9.02 \mathrm{E}-4$	$2.73 \mathrm{E}-3$	11.3

Table: Second-order DG scheme without limitation at time $t=0.1$.

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
600	10×10	$2.67 \mathrm{E}-4$	$3.36 \mathrm{E}-4$	$1.21 \mathrm{E}-3$	4.00
2400	20×20	$3.43 \mathrm{E}-5$	$4.36 \mathrm{E}-5$	$1.66 \mathrm{E}-4$	30.6

Table : Third-order DG scheme without limitation at time $t=0.1$.

Sedov point blast problem on a Cartesian grid

Figure : Point blast Sedov problem on a Cartesian grid made of 30×30 cells: density.
(2) Eulerian and Lagrangian descriptions
(3) Two-dimensional discretization
(4) Numerical results
(5) Conclusion

Conclusions

- Development of generic high-order DG schemes for the 2D gas dynamics system in a total Lagrangian formalism
- GCL and Piola compatibility condition ensured by construction
- Dramatic improvement of symmetry preservation and angular momentum conservation by means of third-order DG scheme
- Analytical proof of the positivity-preserving property of these schemes, form the first-order to the high-orders by means of a special limitation

Perspectives

- High-order limitation on moving high-order geometries
- Extension to ALE
- Extension to magnetohydrodynamics (FCM)
- Code parallelization
- Extension to 3D

Articles published on this topic

圊 F. Vilar, P.-H. Maire and R. Abgrall, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional lagrangian hydrodynamics. Computers and Fluids, 2010.
F. VILAR, A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total lagrangian formulation on general unstructured grids. Computers and Fluids, 2012.
围 F. VILAR, P.-H. Maire and R. Abgrall, A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total lagrangian formulation on general unstructured grids. Journal of Computational Physics, 2014.

Articles in preparation on this topic

F. Vilar, P.-H. Maire and C.-W. Shu, Positivity preservation property of cell-centered lagrangian schemes. Part I: First-order methods.
F. Vilar, P.-H. Maire and C.-W. Shu, Positivity preservation property of cell-centered lagrangian schemes. Part II: Extension to high-orders.

