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Introduction Eulerian and Lagrangian descriptions

Eulerian formalism (spatial description)
Fixed referential attached to the observer
Fixed observation area in which the fluid flows through

Lagrangian formalism (material description)
Moving referential attached to the material
Observation area getting moved and deformed through the fluid flow

Advantages of the Lagrangian formalism
Adapted to the study of regions undergoing large shape changes
Naturally tracks interfaces in multimaterial compressible flows
No numerical diffusion from the discretization of the convection terms

Disadvantages of the Lagrangian formalism
Robustness issue in cases of shear flows or vortexes

=⇒ ALE (Arbitrary Lagrangian-Eulerian) method
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Introduction Eulerian description

Definitions
ρ is the fluid density
u = (u1,u2)t is the fluid velocity
e is the fluid specific total energy
p is the fluid pressure
ε = e − 1

2 u2 is the fluid specific internal energy

Euler equations
∂ ρ

∂t
+∇x � (ρu) = 0 Continuity equation

∂ ρu
∂t

+∇x � (ρu ⊗ u + p Id ) = 0 Momentum conservation equation

∂ ρ e
∂t

+∇x � (ρu e + p u) = 0 Total energy conservation equation

Thermodynamical closure
p = p(ρ, ε) Equation of state (EOS)
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Introduction Updated Lagrangian description

Trajectory equation
∂ x(X , t)

∂t
= u(x(X , t), t), x(X ,0) = X

Material time derivative
ϕ(x , t) is a fluid variable with sufficient smoothness

dϕ
dt
≡ ∂ ϕ(x(X , t), t)

∂t
=
∂ ϕ

∂t
+ u �∇xϕ

Lagrangian equations

ρ
d (1/ρ)

dt
−∇x � u = 0

ρ
d u
dt

+∇xp = 0

ρ
d e
dt

+∇x � (p u) = 0
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Introduction Updated Lagrangian description

Definitions
τ = 1

ρ is the specific volume

U = (τ,u1,u2,e)t is the variables vector
F(U) = (−u,p 1(1),p 1(2),p u)t is the flux vector
1(i) = (δi1, δi2)t

Updated Lagrangian formulation

ρ
d U
dt

+∇x � F(U) = 0 Moving configuration

Integral conservative form
∂

∂t

∫
ω

ρU dv +

∫
∂ω

F(U) � n ds = 0 Moving configuration

Thermodynamical closure
p = p(ρ, ε) Equation of state (EOS)
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Introduction Equations of state

Ideal EOS for the perfect gas

p = ρ (γ − 1) ε where a =
√

γ p
ρ

If ρ > 0 then ε > 0 ⇐⇒ a2 > 0 (⇔ p > 0)

Stiffened EOS for water

p = ρ (γ − 1) ε− γ ps where a =
√

γ (p+ps)
ρ

If ρ > 0 then ρε > ps ⇐⇒ a2 > 0 (⇔ p > −ps)

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas

p = ρ (γ − 1) ε+ fj (ρ) where a =

√
γ p−fj (ρ)+ρ f ′j (ρ)

ρ

If ρ > 0 then ε > 0 =⇒ a2 > 0 (⇔ p > fj (ρ) ≥ 0)

Mie-Grüneisen EOS for solids

p = ρ0 Γ0 ε+ ρ0 a2
0 fm(ρ) where a =

√
a2

0 f ′m(η) +
ρ0 Γ0 p
ρ2

If ρ ∈ [ρ?, Sm
Sm−1 ρ0[ then ε > 0 =⇒ a2 > 0 (⇔ p > ρ0 a2

0 fm(ρ))
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First-order discretization Finite volume scheme

Definitions
0 = t0 < t1 < · · · < tN = T is a partition of the time domain [0,T ]

∆tn = tn+1 − tn is the nth time step
ω =

⋃
c ωc is a partition of the moving domain ω

|ωc | is the volume of cell ωc

mc = ρn
c |ωc | is the constant mass of cell ωc

Generic cell
p+

p−

p

ωc

(a) Polygonal cell.
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(b) Curved polygonal cell.

Qc is a control point set of cell ωc
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First-order discretization Finite volume scheme

Integral conservative system of equations
∂

∂t

∫
ω

ρU dv +

∫
∂ω

F(U) � n ds = 0 Moving configuration

First-order finite volume scheme

Un
c =

1
mc

∫
ωc

ρ(x , tn) U(x , tn) dv

Un+1
c = Un

c −
∆tn

mc

∑
q∈Qc

Fqc � lqcnqc

xn+1
q = xn

q + ∆tn uq

Control point numerical fluxes
Fqc = (−uq , 1(1) pqc , 1(2) pqc , pqc uq)t Local to the cell

pqc = pn
c − z̃qc (uq − un

c) � nqc 1D approximate Riemann solver

z̃qc > 0 Local approximation of the acoustic impedance

François Vilar (Brown) Positivity-preserving Lagrangian schemes July 27th, 2015 8 / 31



First-order discretization Finite volume scheme

Node neighboring cells

p

ωc3

ωc4

ωc2

ωc5
ωc1

(c) Polygonal cell.

p

ωc3

ωc2

ωc1

ωc4

ωc5

(d) Curved polygonal cell.

Cp is the neighboring cell set of node p

Local 1D approximate Riemann solver
pqc = pn

c − z̃qc (uq − un
c) � nqc Loss of the conservation

Scheme conservation∑
c

mc Un+1
c =

∑
c

mc Un
c ⇐⇒

∑
c

∑
q∈Qc

pqc lqcnqc = 0
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First-order discretization Finite volume scheme

GLACE scheme (B. Després et al) 2005
Qc = Pc is the node set of cell ωc

∀q ∈ Qc , lqcnqc = 1
2 (lq−qnq−q + lqq+nqq+ )

up =
(∑

c∈Cp

Mpc

)−1 ∑
c∈Cp

(
Mpcun

c + pn
c lpcnpc

)
Mpc = z̃pc lpc (npc ⊗ npc)

EUCCLHYD scheme (P.-H. Maire et al) 2007

Qc =
⋃

p∈Pc

{p,p+} is the union of the face control point set Q(fpp+ )

q ∈ Q(fpp+ ) = {p,p+}, lqcnqc = 1
2 lpp+npp+

up =
(∑

c∈Cp

Mpc

)−1 ∑
c∈Cp

(
Mpcun

c + pn
c lpcnpc

)
Mpc = z̃−pc l−pc (n−pc ⊗ n−pc) + z̃+

pc l+
pc (n+

pc ⊗ n+
pc)
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First-order discretization Finite volume scheme

CCDG scheme (F. Vilar et al) 2012

Qc =
⋃

p∈Pc

Q(fpp+ )

q ∈ Q(fpp+ ), lqcnqc =

∫ 1

0
λq(ζ)

∑
k∈Q(fpp+ )

∂λk

∂ζ
(xk × ez) dζ

uq =

(
z̃qL un

L + z̃qR un
R

z̃qL + z̃qR

)
− pn

R − pn
L

z̃qL + z̃qR
nqL ∀q ∈ Qc \ Pc

up =
(∑

c∈Cp

Mpc

)−1 ∑
c∈Cp

(
Mpcun

c + pn
c lpcnpc

)
∀p ∈ Pc

Mpc = z̃−pc l−pc (n−pc ⊗ n−pc) + z̃+
pc l+

pc (n+
pc ⊗ n+

pc)

Finite volume scheme on conical meshes (P. Hoch et al) 2011

B. BOUTIN, E. DERIAZ, P. HOCH and P. NAVARO, Extension of ALE
methodology to unstructured conical meshes. ESAIM: Proceedings,
32:32-55, 2011.
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First-order discretization Positivity-preserving scheme

Requirements
|ωc | > 0 ⇐⇒ τn

c > 0 Positive volume and density
(an

c)2 = (a(Un
c))2 > 0 Computable sound speed

Convex admissible set

G =

U =

 τ
u
e

 , τ ∈ ]τmin, τmax [ and ε̂(U) > εmin


ε̂ = ε− ps τ if stiffened gas EOS, ε̂ = ε otherwise

Positivity-preserving scheme
Under which constraint, Un

i ∈ G does imply Un+1
i ∈ G
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First-order discretization Positivity-preserving scheme

1) Particular definition of the local acoustic impedances z̃qc

z̃qc = ρn
c

(
an

c + σ−1
v

∣∣∣(uq − un
c) � nqc

∣∣∣) Modified Dukowicz solver

∆tn ≤ σe
mc∑

q z̃qc lqc

σe ≤ 1

σv ≤ min
(

1− τmin
τn

c
, τmax
τn

c
− 1, (1− εmin

εn
c

)
∣∣ρn

c ε
n
c

pn
c

∣∣)
2) Additional constraint on the time step ∆tn

∆tn ≤ σe
mc∑

q z̃qc lqc

(
= σe

|ωc |
an

c
∑

q lqc
if z̃qc = ρn

c an
c

)
σe ≤ 2

∆tn < σv
|ωn

c |
|∑q uq � lqcnqc |

(
⇐⇒

∣∣|ωn+1
c | − |ωn

c |
∣∣

|ωn
c |

< σv

)
σv ≤ min

(
1− τmin

τn
c
, τmax
τn

c
− 1, (1− εmin

εn
c

)
∣∣ρn

c ε
n
c

pn
c

∣∣)
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High-order discretization High-order finite-volume-based scheme

High-order polynomial extension
Un

h,c(x) ∈ PK (ωc) piecewise polynomial reconstruction

Un
c =

1
mc

∫
ωc

ρn
h,c(x) Un

h,c(x) dv

MUSCL, ENO, WENO, DG, . . .

Generic scheme on the mass averaged values

Un+1
c = Un

c −
∆tn

mc

∑
q∈Qc

Fqc � lqcnqc

pqc = pqc − z̃qc (uq − uqc) � nqc

Uqc = Un
h,c(xq) and pqc = p(Uqc)
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High-order discretization Positivity-preserving scheme

X. Zhang and C.-W. Shu seminal work
Positivity-preserving high-order schemes
Decompose the high-order scheme in first-order-like schemes

High-order quadrature rule{
(wα, yα)

}
α∈Θc

are the positive quadrature weights and quadrature
points, including the cell control point set, i .e. Qc ⊂ Θc

Un
c = 1

mc

∑
α∈Θc

mαc Uαc

mαc = wα mc in the GLACE and EUCCLHYD schemes
mαc = wα ρ0(Xα) |Ωc | in the CCDG scheme

Un
c convex decomposition

Un
c =

1
mc

∑
α∈Θc\Qc

mαc Uαc +
1

mc

∑
q∈Qc

mqc Uqc =
m?

c

mc
U?c +

1
mc

∑
q∈Qc

mqc Uqc

m?
c =

∑
α∈Θc\Qc

mαc and U?c =
1

m?
c

∑
α∈Θc\Qc

mαc Uαc
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High-order discretization Positivity-preserving scheme

Fundamental relation∑
q∈Qc

lqcnqc = 0 The normals sum to zero

Artificial flux
Fqc = (−uc , 1(1) pqc , 1(2) pqc , pqc uc)t∑
r∈Qc

Frc � lrcnrc = 0

∑
r∈Qc\q

Frc � lrcnrc = −Fqc � lqcnqc

Un+1
c convex decomposition

Un+1
c = Un

c −
∆tn

mc

∑
q∈Qc

Fqc � lqcnqc +
∆tn

mc

∑
q∈Qc

Fqc � lqcnqc

Un+1
c =

m?
c

mc
U?c +

∑
q∈Qc

mqc

mc

[
Uqc −

∆tn

mqc

(
Fqc − Fqc

)
� lqcnqc

]
︸ ︷︷ ︸

Vqc
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High-order discretization Positivity-preserving scheme

New artificial flux
F

q
r = (−uq

r , 1(1) pq
r , 1(2) pq

r , p
q
r u

q
r )t

∀r ∈ Qc , F
q
r =

{
Fqc , if r = q,
Frc , otherwise,

Un+1
c convex decomposition

Un+1
c =

m?
c

mc
U?c +

∑
q∈Qc

mqc

mc
Vqc

Vqc = Uqc −
∆tn

mqc

∑
r∈Qc

F
q
r � lrcnrc

First-order scheme

Un+1
c = Un

c −
∆tn

mc

∑
r∈Qc

Frc � lrcnrc

Fqc = (−uq , 1(1) pqc , 1(2) pqc , pqc uq)t

prc = pn
c − z̃rc (ur − un

c) � nrc
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High-order discretization Positivity-preserving scheme

Conditions to mimic the first-order∑
r∈Qc

pq
r lrcnrc =

∑
r∈Qc

(
pqc − z̃q

rc (uq
r − uqc) � nrc

)
lrcnrc

(pqc − pqc) lqcnqc = −
∑
r∈Qc

z̃q
rc lrc (nrc ⊗ nrc)︸ ︷︷ ︸

Mq
rc

(uq
r − uqc)

pqc = pqc − z̃qc (uq − uqc) � nqc

Artificial pressure
pqc lqcnqc = pqc lqcnqc + Mq

c (uc − uqc)

Artificial velocity∑
q∈Qc

pqc lqcnqc = 0

uc =
( ∑

q∈Qc

Mq
c

)−1 ∑
q∈Qc

[
Mq

c uqc − pqc lqcnqc

]
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High-order discretization Positivity-preserving scheme

1) Particular definition of the local acoustic impedances z̃qc

∀q ∈ Qc , Uqc ∈ G and U?c ∈ G Specific limitation procedure

z̃q
rc = ρqc

(
aqc + Γ̃

∣∣(uq
r − uqc) � nrc

∣∣)
∆t ≤ σe

mqc∑
r z̃q

rc lrc
, ∀q ∈ Qc with σe ≤ 1

σv ≤ min
(

1− τmin
τqc
, τmax
τqc
− 1,

(
1− εmin

εqc

) ∣∣∣ εqc
τqc pqc

∣∣∣)
2) Additional constraint on the time step ∆tn

∀q ∈ Qc , Uqc ∈ G and U?c ∈ G Specific limitation procedure

∆t ≤ σe
mqc∑
r z̃q

rc lrc
, ∀q ∈ Qc with σe ≤ 2

∆t ≤ σv
τqc mqc∣∣ ∑

r∈Qc

uq
r � lrcnrc

∣∣
σv ≤ min

(
1− τmin

τqc
, τmax
τqc
− 1,

(
1− εmin

εqc

) ∣∣∣ εqc
τqc pqc

∣∣∣)
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High-order discretization Positivity-preserving limitation

Mean value conservative limitation
Ũn

h,c(x) = Un
c + θ (Un

h,c − Un
c)

θ ∈ [0,1] is the limiting coefficient to be determined

Requirements

∀q ∈ Qc , Ũqc ≡ Ũn
h,c(xqc) ∈ G

Ũ?c ≡
1

m?
c

∑
α∈Θc\Qc

mαc Ũn
h,c(xα) ∈ G

Specific volume limitation τ ∈ [τmin, τmax ]

τ̃n
h,c(x) = τn

c + θτ (τn
h,c − τn

c )

θτ = min(θmin
τ , θmax

τ )

θmin
τ =

τn
c − τmin

τn
c − τmin

m
with τmin

m = min(τ?c ,minq∈Qc τqc)

θmax
τ =

τmax − τn
c

τmax
m − τn

c
with τmax

m = max(τ?c ,maxq∈Qc τqc)
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High-order discretization Positivity-preserving limitation

Velocity and total energy limitation

ũn
h,c(x) = un

c + θε (un
h,c − un

c)

ẽn
h,c(x) = en

c + θε (en
h,c − en

c )

Internal energy condition ε̂ > εmin

ε = e − 1
2 (u)2

ε̂ = ε− ps τ if stiffened gas EOS, ε̂ = ε otherwise˜̂εn
h,c(x) = ε̂n

c + θε (ε̂n
h,c(x)− ε̂n

c) +
θε(1− θε)

2
(un

h,c(x)− un
c)2

θε is chosen in optimal manner by solving this quadratic equation
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High-order discretization High-order Runge-Kutta time integration

SSP Runge-Kutta method
Convex combination of first-order forward Euler schemes
We know there is a time step small enough ensuring the global
high-order scheme to be positive

Practical applications - Iterative process
At each time level n, we start from an initial time step ∆tn

If at any Runge-Kutta stage the average of the numerical solution does
not belonged to the admissible set then we return to time level n and take
∆tn/2 as new time step
In the light of the theory previously developed, we know for sure this
iterative process admits a limit
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Numerical results Sedov point blast problem

Sedov point blast problem on a Cartesian grid

(e) Second-order scheme.

 0
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 0  0.2  0.4  0.6  0.8  1  1.2

solution

1st order

2nd order

(f) Density profiles.

Fig: Point blast Sedov problem on a Cartesian grid made of 30 × 30 cells: density.
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Numerical results Sedov point blast problem

Sedov point blast problem on a polygonal grid

(g) Second-order scheme.
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(h) Density profiles.

Fig: Point blast Sedov problem on a mesh made of 775 polygonal cells: density.
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Numerical results Air-water-air problem

Air-water-air problem on a polar grid

(i) Density map. (j) Kinetic energy map.

Fig: Air-water-air problem on a polar grid made of 120 × 9 cells with second-order
scheme.
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Numerical results Air-water-air problem

Air-water-air problem on a polar grid
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Fig: Air-water-air problem on a polar grid made of 120 × 9 cells.
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Numerical results Underwater TNT explosion problem

Underwater TNT explosion problem on a polar grid

(m) Density map. (n) Pressure map.

Fig: Underwater TNT explosion problem on a polar grid made of 120 × 9 cells with
second-order scheme.
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Numerical results Underwater TNT explosion problem

Underwater TNT explosion problem on a polar grid

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 0.0011

 0.0012

 0.0013

 0  0.2  0.4  0.6  0.8  1  1.2

solution

1st order

2nd order

(o) Density profiles.

 0

 200

 400

 600

 800

 1000

 0  0.2  0.4  0.6  0.8  1  1.2

solution

1st order

2nd order

(p) Pressure profiles.

Fig: Underwater TNT explosion problem on a polar grid made of 120 × 9 cells.
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Numerical results Projectile impact problem

Projectile impact problem on a Cartesian grid

(q) Density maps.

Fig: Projectile impact problem on a Cartesian grid made of 100 × 10 cells with
second-order scheme.
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Numerical results Projectile impact problem
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second-order scheme.
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Conclusion

Conclusions
Demonstration of positivity of one-dimensional Lagrangian schemes
For both first-order scheme and high-order schemes
For both ideal and non-ideal equations of state
Two different techniques used

Particular definition of the local acoustic impedances approximation
Additional constraint of the time step

Extension to the two-dimensional case
Theory fits a wide number of existing cell-centered Lagrangian schemes
Improvement of the robustness

Perspectives
High-order limitation on moving high-order geometries
Extension to ALE
Extension to magneto-hydrodynamics (FCM)
Extension to 3D
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